Rotational Effect on Flow Field and Thermal Characteristics of a Turboexpander for Helium Liquefaction System: A Numerical Perspective

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Manoj Kumar ◽  
Suraj K. Behera ◽  
Amitesh Kumar ◽  
Ranjit K. Sahoo

Abstract Cryogenic turboexpander is an essential component to produce the refrigeration effect in various helium liquefaction systems. The convergent nozzle and small-scale radial inflow turbine (turboexpander) are the important components that are responsible for increasing the performance of the cycle. In this paper, an optimum preliminary design approach of the turbine and nozzle is explained using real gas properties. Initially, the Sobol method is used to determine the sensitivity indices and optimized range of ten important nondimensional and geometrical variables for better performance of the radial turbine. Three turboexpanders of a modified Collins cycle-based helium liquefaction system have been designed considering the optimized ranges. The proposed method improves the isentropic efficiency and power output of the turbine up to 3.86% and 5.14%, respectively, as compared to the initial design. Hereafter, a comparative three-dimensional numerical analysis is conducted to characterize the flow physics and thermal properties of three turboexpander systems (16 bar and 40 K, 6 bar and 20 K, and 16 bar and 10 K). The thermal and fluid flow properties such as temperature, Prandtl number, static enthalpy, entropy, velocity vectors, Reynolds number, and turbulence kinetic energy are determined at different spans and streamwise locations. Moreover, the present numerical results are also verified with the experimental and numerical results obtained from the existing literature. The study highlights the optimal range of design variables for helium turbine, the methodology for helium liquefaction system, and the numerical analysis to understand the flow physics and thermal properties of helium near its boiling point.

2000 ◽  
Author(s):  
Tien-Chien Jen ◽  
Gustavo Gutierrez ◽  
Sunil Eapen

Abstract A numerical analysis, using a control volume approach, is conducted to study the transient cutting tool temperatures with temperature dependent thermal properties. With temperature dependent thermal properties, the governing conduction equation is non-linear and thus, the standard analytical solutions are no longer valid. In any cutting processes, the temperature distribution is intrinsically three-dimensional and very steep temperature gradient may be generated in the vicinity of the tool-chip interface. In this region, where the maximum temperature occurs, the effect of variable thermal properties may become important. The full three-dimensional non-linear transient heat conduction equation is solved numerically to study these non-linear effects on cutting tool temperatures. The extremely small size of the heat input zone (tool-chip interface), relative to the tool insert rake surface area, requires the mesh to be dense enough in order to obtain accurate solutions. This usually requires very intensive computational efforts. Due to the size of the discretized domain, an efficient algorithm is desirable in the solution of the problem. Four different iterative schemes are explored, and an optimized numerical scheme is chosen to significantly reduce the required computing time. This numerical model can be used for process development in an industrial setting. The effect of two different heat flux input profiles, a spatially uniform plane heat flux and a spatially non-uniform plane heat flux at the tool-chip interface, on the tool temperatures are also investigated in the present study. Some recommendations are given regarding the condition when these non-linear effects can not be ignored.


2010 ◽  
Vol 27 (5) ◽  
pp. 658-673 ◽  
Author(s):  
M.Q. Al‐Odat

PurposeThe purpose of this paper is to conduct a full three‐dimensional numerical analysis to simulate the thermal behavior of high speed steel (HSS) cutting tool, with temperature dependent thermal properties, in dry machining with embedded heat pipe (HP), and investigate the effects of HP installation, variable thermal properties, generated heat flux and cutting speed.Design/methodology/approachThe heat transfer equation used to predict cutting tool temperature is parabolic partial differential equation. Grid points including independent variables are initially formed in solution of partial differential equation by finite element method (FEM). In this paper, one‐dimensional heat transfer equation with variable thermophysical properties is solved by FEM.FindingsIn this paper, the heat transfer equation in cutting tool is solved for variable thermophysical properties and the temperature field and temperature history are obtained. Variable thermophysical properties are considered to display the temperature fields in the cutting tool.Originality/valueA full three‐dimensional numerical analysis is conducted to simulate the thermal behavior of HSS cutting tool, with temperature dependent thermal properties, in dry machining with embedded HP. The heat conduction equation is solved by FEM analysis.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


2013 ◽  
Vol 41 (1) ◽  
pp. 60-79 ◽  
Author(s):  
Wei Yintao ◽  
Luo Yiwen ◽  
Miao Yiming ◽  
Chai Delong ◽  
Feng Xijin

ABSTRACT: This article focuses on steel cord deformation and force investigation within heavy-duty radial tires. Typical bending deformation and tension force distributions of steel reinforcement within a truck bus radial (TBR) tire have been obtained, and they provide useful input for the local scale modeling of the steel cord. The three-dimensional carpet plots of the cord force distribution within a TBR tire are presented. The carcass-bending curvature is derived from the deformation of the carcass center line. A high-efficiency modeling approach for layered multistrand cord structures has been developed that uses cord design variables such as lay angle, lay length, and radius of the strand center line as input. Several types of steel cord have been modeled using the developed method as an example. The pure tension for two cords and the combined tension bending under various loading conditions relevant to tire deformation have been simulated by a finite element analysis (FEA). Good agreement has been found between experimental and FEA-determined tension force-displacement curves, and the characteristic structural and plastic deformation phases have been revealed by the FE simulation. Furthermore, some interesting local stress and deformation patterns under combined tension and bending are found that have not been previously reported. In addition, an experimental cord force measurement approach is included in this article.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


Author(s):  
Emre Bulut ◽  
Gökhan Sevilgen ◽  
Ferdi Eşiyok ◽  
Ferruh Öztürk ◽  
Tuğçe Turan Abi

2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


2021 ◽  
Vol 13 (11) ◽  
pp. 6188
Author(s):  
Sungwan Son ◽  
Choon-Man Jang

For students, who spend most of their time in school classrooms, it is important to maintain indoor air quality (IAQ) to ensure a comfortable and healthy life. Recently, the ventilation performance for indoor air quality in elementary schools has emerged as an important social issue due to the increase in the number of days of continuous high concentrations of particulate matter. Three-dimensional numerical analysis has been introduced to evaluate the indoor airflow according to the installation location of return diffusers. Considering the possibility of the cross-infection of infectious diseases between students due to the direction of airflow in the classroom, the airflow angles of the average respiratory height range of elementary school students, between 1.0 and 1.5 m, are analyzed. Throughout the numerical analysis inside the classroom, it is found that the floor return system reduces the indoor horizontal airflow that causes cross-infection among students by 20% compared to the upper return systems. Air ventilation performance is also analyzed in detail using the results of numerical simulation, including streamlines, temperature and the age of air.


Sign in / Sign up

Export Citation Format

Share Document