Sensitivity Analysis of N Undistinguishable Photovoltaic Thermal Compound-Parabolic-Concentrator Collectors (Partly Covered, 50%) Integrated Single-Slope Solar Distiller Unit

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Desh B. Singh ◽  
Gagan Bansal ◽  
Haridwar Prasad ◽  
Ashis Mallick ◽  
Navneet Kumar ◽  
...  

Abstract In the current research, the sensitivity analysis of N alike in parts covered photovoltaic thermal compound parabolic concentrator collectors integrated single-slope solar distiller unit is performed and examined. The analysis is done using computational programming in matlab (month: May and location: New Delhi). The parametric values of potable water and DC electric power outputs have been figured for different values of mass flow rate (MFR), number of collectors (N), packing factor (PF), and water depth (WD). Elaborative observations says that the value of potable water output declines and DC electric power output increases with the increase in MFR for the considered values of N, PF, and WD. Also the values of DC electric power increases by 81.63% if packing factor is increased from 0.4 to 0.6 for the considered values of MFR, N, and WD. Based on the results of all the analysis, sensible and effective conclusions are made.

2018 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Takatoshi Hayashi ◽  
Tomoya Nagayama ◽  
Tadashi Tanaka ◽  
Yoshitaka Inui

Author(s):  
Qing He ◽  
Dongmei Du

The disturbance of electric power system makes large-scale turbine-generator shafts generate torsional vibration. A available method to restrain the torsional vibration of turbine-generator shafts is that all the natural frequencies of torsional vibration of turbine-generator shafts must keep away from the working frequency and its harmonic frequencies as well as all the frequencies that possibly bring on interaction between turbine-generator and electric power system so that the torsional resonation of shafts may not occur. A dynamic design method for natural frequencies of torsional vibration of rotor system based on sensitivity analysis is presented. The sensitivities of natural frequency of torsional vibration to structure parameters of rotor system are obtained by means of the theory of sensitivity. After calculated the torsional vibration dynamic characteristics of original shafts of a torsional vibration stand that simulates the real shafts of 300MW turbine-generator, the dynamic modification for the torsional vibration natural frequency is carried out by the sensitivity analysis method, which makes the first-five natural frequencies of torsional vibration of the stand is very close to the design object. It is proved that the sensitivity analysis method can be used to the dynamic adjustment and optimal design of real shafts of turbine-generator.


2019 ◽  
Vol 12 (1) ◽  
pp. 276 ◽  
Author(s):  
Jangwon Suh ◽  
Yonghae Jang ◽  
Yosoon Choi

An interest in floating photovoltaic (PV) is growing drastically worldwide. To evaluate the feasibility of floating PV projects, an accurate estimation of electric power output (EPO) is a crucial first step. This study estimates the EPO of a floating PV system and compares it with the actual EPO observed at the Hapcheon Dam, Korea. Typical meteorological year data and system design parameters were entered into System Advisor Model (SAM) software to estimate the hourly and monthly EPOs. The monthly estimated EPOs were lower than the monthly observed EPOs. This result is ascribed to the cooling effect of the water environment on the floating PV module, which makes the floating PV efficiency higher than overland PV efficiency. Unfortunately, most commercial PV software, including the SAM, was unable to consider this effect in estimating EPO. The error results showed it was possible to estimate the monthly EPOs with an error of less than 15% (simply by simulation) and 9% (when considering the cooling effect: 110% of the estimated monthly EPOs). This indicates that the approach of using empirical results can provide more reliable estimation of EPO in the feasibility assessment stage of floating PV projects. Furthermore, it is necessary to develop simulation software dedicated to the floating PV system.


INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 81
Author(s):  
Adhy Prayitno ◽  
Muhammad Irvan ◽  
Sigit Nurharsanto ◽  
Wahyu Fajar Yantoa

Observations and measurements have been conducted towards a solar panel electric power output that is utilized by a solar tracking system. The electrical power output depends on the position of the sun and time and the direction of the panel surface against the angle of the incident light. For power optimization, the solar panel surface should always be directed perpendicular to the direction of the sunlight falling to the surface of the panel. The application of the solar tracking system controlled by a micro controller gives the expected results. The electrical power output of a static solar panel mounted on a fixed position becomes the benchmark of the output electric power value in this study. The measurement results of the electric power output of the solar panel with sun tracking system shows a significant increase in sunny weather conditions.The average increase of that is about 57.3%.Keywords: LDR, micro controller, optimal power output, performance improvment, sun tracking,


Author(s):  
Hitoshi Ohata ◽  
Toshikazu Nishibata ◽  
Tetsuya Onose

Reactor thermal power uprate (Power uprate) of operating light water reactors has long successful experiences in many nuclear power plants in the United States of America and European countries since late 1970’s. And it will be also introduced in Japan soon. This paper mainly describes the outline of the attempt of five-percent reactor thermal power uprate of Tokai No.2 Nuclear Power Station (Tokai-2) operated by the Japan Atomic Power Company (JAPC). It will be the leading case in Japan. Tokai-2 is GE type Boiling Water Reactor (BWR) of 1100 MW licensed electric power output and it commenced commercial operation in November 28, 1978. Power uprate is an effective approach for increasing electric power output. And it is recognized as one of the measures for effective and efficient use of existing Japanese operating nuclear power plants. It can contribute to inexpensive and stable electric power supply increase. Especially “Stretch Power Uprate (SPU)” requires only minor equipment modification or component replacement. It is also a countermeasure against global warming. Therefore it is a common theme to be accomplished in the near future for both Japanese electric power companies and government. JAPC started feasibility studies on power uprate in 2003. And in 2007, JAPC established a plan to achieve five-percent power uprate in Tokai-2 and announced this project to the public. This is a leading attempt in the Japanese electric power companies and it is the first case under the current Japanese regulatory requirements. In this plan, JAPC reflected lessons learned from preceding nuclear power plants in the United States and European countries, and tried to make most use of the performance of existing systems and components in Tokai-2 which have been periodically or timely renewed by utilizing more reliable and efficient design. JAPC plans to submit application documents to amend current License for Reactor Establishment Permit shortly. It will contain a complete set of revised safety analysis results based on the uprated reactor thermal power condition. Successful introduction of Tokai-2 power uprate will contribute to the establishment of regulatory process for power uprate in Japan and following attempts by other Japanese electric power companies.


Author(s):  
G N Tiwari ◽  
Md Meraj ◽  
M.E. Khan ◽  
Md Azhar

Abstract Based on energy balance equations for a photo-voltaic thermal (PVT) active solar distillation system, a modified Hottel-Whillier-Bliss (HWB) analytical characteristic equation as a function of design and climatic parameters has been derived in the present manuscript. It has been found that there is significant difference between characteristic equations for PVT based active solar distillation and conventional flat plate collector (FPC). It is due to (i) opposite nature of loss factor from inside surface to ambient through glass cover and (ii) temperature dependence of evaporative heat transfer coefficient between water surface and condensing cover in solar distillation system. Numerical computations have been obtained for characteristic curve of the proposed active solar distillation system and flat plate collector under the condition of a typical day of New Delhi, India. Further, effect of performance parameters such as packing factor, electrical efficiency of individual PVT collectors, water mass etc. have also been studied for the proposed active PVT solar distillation system. Moreover, daily yield of portable water has been found 7.34 kg m−2 at n = 5 and βc = 0.25 which is 100.5 % higher than the daily yield of 3.66 kg m−2 obtained at n = 1, βc = 0.89.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 49-55 ◽  
Author(s):  
J. Koschikowski ◽  
M. Wieghaus ◽  
M. Rommel

In arid and semi-arid regions the lack of drinkable water often corresponds with a high solar insolation. These conditions are favourable for the use of solar energy as the driving force for water treatment systems. Especially in remote rural areas with low infrastructure and without connection to a grid, smallscale, stand-alone operating systems for the desalination of brackish water from wells or salt water from the sea are desirable to provide settlements with clean potable water. Fraunhofer Institut für Solare Energiesysteme is currently developing a solar thermally driven stand alone desalination system. The aim is to develop systems for a capacity range of 0.2 to 10 m3/day. Technical simplicity, long maintenance-free operation periods and high quality potable water output are very important aims for successful applications of the systems. The separation technique that the system is based on is membrane distillation. The implemented heat source is a corrosion-free, sea water resistant thermal collector.


Sign in / Sign up

Export Citation Format

Share Document