Effect of Transfer Films on Friction of PTFE/PEEK Composite

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Shuren Qu ◽  
King Him Lo ◽  
Su Su Wang

Abstract This paper investigates the effect of transfer films on friction coefficient of polytetrafluoroethylene (PTFE)/polyetheretherketone (PEEK) composite. Friction experiments were carried out first to investigate transfer-film development during sliding contact of PTFE/PEEK composite with different PTFE volume fractions on a steel counterface. Quantitative relationships between PTFE/PEEK composite friction coefficient and constituent material mechanical properties are then established to facilitate the subsequent investigation of friction mechanisms and influence of transfer films on the composite friction. A micromechanics-based friction theory is developed for predicting PTFE/PEEK composite friction coefficient. The effect of transfer films on composite friction is accounted for based on two distinctly different mechanisms—one with solid-state film lubrication and the other with PTFE as a solid-state lubricant on the top surface of transfer films. The friction theory is first validated through the excellent agreement obtained between the theoretical predictions and the in-house experimental results on PTFE/PEEK composite with up to 20% PTFE (by volume). The validity of the theory is further demonstrated by comparing the theoretical predictions with the test data reported by other researchers in the literature.

2018 ◽  
Vol 70 (3) ◽  
pp. 560-567 ◽  
Author(s):  
Jian Feng Li ◽  
Qin Shi ◽  
HeJun Zhu ◽  
ChenYu Huang ◽  
Shuai Zhang ◽  
...  

Purpose This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to show that Cu-based electrical contact materials containing Nb0.91Ti0.09Se2 have better electrical and tribological properties than those containing NbSe2. The tribological properties of Cu-based with different Ti-dopped NbSe2 content were also discussed. Design/methodology/approach The NbSe2 and Nb0.91Ti0.09Se2 particles were fabricated by thermal solid state reaction method. The powder metallurgy technique was used to fabricate composites with varying Nb0.91Ti0.09Se2 mass fraction. The phase composition of Cu-based composites was identified by X-ray diffraction, and the morphology of NbSe2/Nb0.91Ti0.09Se2 and the worn surface of composites were characterized by scanning electron microscopy and transmission electron microscopy. In addition, the tribological properties of composites were appraised using a ball-on-disk multi-functional tribometer. The data of friction coefficient and resistivity were analyzed and the corresponding conclusion was drawn. Findings In comparison with the pure copper, Cu-based composites containing Nb0.91Ti0.09Se2/NbSe2 had a lower friction coefficient, illustrating the Nb0.91Ti0.09Se2 with nano-size particles prepared in this work is a perfect choice for the fabrication of excellent electrical contact composites. Compared to composites with NbSe2, composites containing Nb0.91Ti0.09Se2 have better tribological and electrical properties. Research limitations/implications Because of the use of thermal solid state reaction method, the size of NbSe2 and Nb0.91Ti0.09Se2 is relatively large. Therefore, the fabrication of finer particles of Nb0.91Ti0.09Se2 is encouraged. Originality/value In this paper, the authors discuss the tribological and electrical properties of Cu-based composites, and the value of optimum obtained as Nb0.91Ti0.09Se2 content is 15 Wt.%.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Shivam S. Alakhramsing ◽  
Matthijn B. de Rooij ◽  
Aydar Akchurin ◽  
Dirk J. Schipper ◽  
Mark van Drogen

In this work, a mixed lubrication model, applicable to cam-roller contacts, is presented. The model takes into account non-Newtonian, thermal effects, and variable roller angular velocity. Mixed lubrication is analyzed using the load sharing concept, using measured surface roughness. Using the model, a quasi-static analysis for a heavily loaded cam-roller follower contact is carried out. The results show that when the lubrication conditions in the roller-pin contact are satisfactory, i.e., low friction levels, then the nearly “pure rolling” condition at the cam-roller contact is maintained and lubrication performance is also satisfactory. Moreover, non-Newtonian and thermal effects are then negligible. Furthermore, the influence of roller-pin friction coefficient on the overall tribological behavior of the cam-roller contact is investigated. In this part, a parametric study is carried out in which the friction coefficient in the roller-pin contact is varied from values corresponding to full film lubrication to values corresponding to boundary lubrication. Main findings are that at increasing friction levels in the roller-pin contact, there is a sudden increase in the slide-to-roll ratio (SRR) in the cam-roller contact. The value of the roller-pin friction coefficient at which this sudden increase in SRR is noticed depends on the contact force, the non-Newtonian characteristics, and viscosity–pressure dependence. For roller-pin friction coefficient values higher than this critical value, inclusion of non-Newtonian and thermal effects becomes highly important. Furthermore, after this critical level of roller-pin friction, the lubrication regime rapidly shifts from full film to mixed lubrication. Based on the findings in this work, the importance of ensuring adequate lubrication in the roller-pin contact is highlighted as this appears to be the critical contact in the cam-follower unit.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Shenghai Wang ◽  
Aldo Ferri ◽  
William Singhose

When laying down a long slender beam from a near-vertical orientation, to a horizontal position on a flat surface, the payload may slip and move suddenly in unintended and unpredictable ways. This occurs during crane operations when the movements of the overhead trolley and lowering of the hoist cable are not properly coordinated. The payload's unintended sliding can potentially cause damage and injure people. This paper presents static and dynamic analyses of slender-beam payload lay-down operations that establish a structured method to predict the safe conditions for lay-down operations. Also, a new method to measure the friction coefficient of surface-to-line contact is proposed. Lay-down experiments are carried out to verify the theoretical predictions.


2012 ◽  
Vol 510 ◽  
pp. 563-568
Author(s):  
Yan Ji Zhu ◽  
Hui Juan Qian ◽  
Gui Ying Wang ◽  
Huai Yuan Wang

In this paper, polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE) based composites reinforced with various amounts of potassium titanate whiskers (PTWs) or short carbon fibers (CF) were designed and fabricated respectively. The friction and wear properties of PEEK and PTFE based composites sliding under rigorous alkaline were comparatively investigated. Also, the morphologies of the worn and counterpart surfaces were studied by scanning electron microscopy (SEM). Because of the stable tunnel crystal structure and frame structure micro-reinforcement capacity, PTWs show outstanding performances in increasing the wear resistance and reducing the friction coefficients of both PEEK and PTFE based composites under alkaline. However, CF leads to the degradation of wear resistance and the increase of friction coefficient of PEEK based composites under alkaline. Furrows and abrasive wear were the main mechanisms for CF/PTFE/PEEK and CF/PTFE composites sliding in alkali. The results show that PTW/PTFE composites exhibit higher wear resistance under lower load, while PTW/PTFE/PEEK composite is more suitable for higher load under alkaline condition. Owing to the primary cooling and boundary lubricating effects of alkali, the wear rates and friction coefficients of PTFE composites and PTW/PTFE/PEEK composites decreased obviously, though the transfer films onto the counterpart steel surface were hindered considerably.


1972 ◽  
Vol 39 (1) ◽  
pp. 36-40
Author(s):  
D. S. Bedi ◽  
M. J. Hillier

A theoretical model for the friction coefficient indicates two critical speeds of sliding. The lower critical speed corresponds to a change-over from boundary to mixed lubrication conditions, the higher critical speed a transition to full fluid-film lubrication at angles of inclination less than 0.01 deg. The first critical speed appears to be associated with the “stick-slip” phenomenon.


Author(s):  
Romain Moury ◽  
Zbigniew Łodziana ◽  
Arndt Remhof ◽  
Léo Duchêne ◽  
Elsa Roedern ◽  
...  

closo-Borates, such as Na2B12H12, are an emerging class of ionic conductors that show promising chemical, electrochemical and mechanical properties as electrolytes in all-solid-state batteries. Motivated by theoretical predictions, high-pressure in situ powder X-ray diffraction on Na2B12H12 was performed and two high-pressure phases are discovered. The first phase transition occurs at 0.5 GPa and it is persistent to ambient pressure, whereas the second transition takes place between 5.7 and 8.1 GPa and it is fully reversible. The mechanisms of the transitions by means of group theoretical analysis are unveiled. The primary-order parameters are identified and the stability at ambient pressure of the first polymorph is explained by density functional theory calculations. Finally, the parameters relevant to engineer and build an all-solid-state battery, namely, the bulk modulus and the coefficient of the thermal expansion are reported. The relatively low value of the bulk modulus for the first polymorph (14 GPa) indicates a soft material which allows accommodation of the volume change of the cathode during cycling.


Author(s):  
G A Ateshian ◽  
H Wang

A mechanism which may contribute to the frictional coefficient of diarthrodial joints is the rolling resistance due to hysteretic energy loss of viscoelastic cartilage resulting from interstitial fluid flow. The hypothesis of this study is that rolling resistance contributes significantly to the measured friction coefficient of articular cartilage. Due to the difficulty of testing this hypothesis experimentally, theoretical predictions of the rolling resistance are obtained using the solution for rolling contact of biphasic cylindrical cartilage layers [Ateshian and Wang (1)]. Over a range of rolling velocities, tissue properties and dimensions, it is found that the coefficient of rolling resistance μR varies in magnitude from 10−6 to 10−2; thus, it is generally negligible in comparison with experimental measurements of the cartilage friction coefficient (10−3-10−1) except, possibly, when the tissue is arthritic. Hence, the hypothesis of this study is rejected on the basis of these results.


Sign in / Sign up

Export Citation Format

Share Document