A New Approach to Compute Natural Frequencies and Mode Shapes of One-Dimensional Continuous Structures With Arbitrary Nonuniformities

2020 ◽  
Vol 15 (11) ◽  
Author(s):  
Alok Sinha

Abstract One-dimensional continuous structures include longitudinal vibration of bars, torsional vibration of circular shafts, and transverse vibration of beams. Using the linear time-varying system theory, algorithms are developed in this paper to compute natural frequencies and mode shapes of these structures with nonuniform spatial parameters (mass distributions, material properties and cross-sectional areas) which can have jump discontinuities. A general numerical approach has been presented to include Dirac-delta functions and their spatial derivatives due to jump discontinuities. Numerical results are presented to illustrate the application of these techniques to the solution of different types of spatial variations of parameters and boundary conditions.

Author(s):  
Alok Sinha

Abstract The wave equation governing longitudinal vibration of a bar and torsional vibration of a circular shaft, and the Euler-Bernoulli equation governing transverse vibration of a beam were developed in the eighteenth century. Natural frequencies and mode shapes are easily obtained for uniform or constant spatial parameters (cross sectional area, material property and mass distribution). But, real engineering structures seldom have constant parameters. For non-uniform continuous structure, a large number of papers have been written for more than 100 years since the publication of Kirchhoff’s memoir in 1882. There are analytical solutions only in few cases, and there are approximate numerical methods to deal with other (almost all) cases, most notably Stodola, Holzer and Myklestad methods in addition to Rayleigh-Ritz and finite element methods. This paper presents a novel approach to compute natural frequencies and mode shapes for arbitrary variations of spatial parameters on the basis of linear time-varying system theory. The advantage of this approach is that now it can be claimed that “almost” closed-form solutions are available to find natural frequencies and mode shapes of any non-uniform, linear and one-dimensional continuous structure.


1953 ◽  
Vol 20 (2) ◽  
pp. 173-177
Author(s):  
James L. Lubkin ◽  
Yudell L. Luke

Abstract The natural frequencies of a slender, homogeneous, fixed-free rod of variable section are studied in a one-dimensional theory. The rod is uniform at the fixed end for a certain distance L1, and then tapers for a distance L2 so that the cross-sectional area varies linearly. The frequency equation is derived and its first five zeros are tabulated for several ratios of L1 to L2, and various tapers. The first few terms of asymptotic expansions for the roots of the frequency equation are presented and discussed.


2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


Author(s):  
Reza Sadeghi ◽  
Firooz Bakhtiari-Nejad ◽  
Taha Goudarzi

Femur bone is the longest and largest bone in the human skeleton. This bone connects the pelvic bone to the knee and carries most of the body weight. The static behavior of femur bone has been a center of investigation for many years while little attention has been given to its dynamic and vibrational behavior, which is of great importance in sports activities, car crashes and elderly falls. Investigation of natural frequencies and mode shapes of bone structures are important to understand the dynamic and vibrating behaviors. Vibrational analysis of femoral bones is presented using finite element method. In the analysis, the bone was modeled with isotropic and orthotropic mechanical properties. The effect of surrounding bone muscles has also been accounted for as a viscoelastic medium embedding the femur bone. Natural frequencies extracted considering the effects of age aggravated by weakening the elastic modulus and density loss. The effects of real complex bone geometry on natural frequencies are studied and are compared with a simple circular cross-sectional model.


2012 ◽  
Vol 19 (6) ◽  
pp. 1167-1180 ◽  
Author(s):  
A.M. Yu ◽  
Y. Hao

Free vibration equations for non-cylindrical (conical, barrel, and hyperboloidal types) helical springs with noncircular cross-sections, which consist of 14 first-order ordinary differential equations with variable coefficients, are theoretically derived using spatially curved beam theory. In the formulation, the warping effect upon natural frequencies and vibrating mode shapes is first studied in addition to including the rotary inertia, the shear and axial deformation influences. The natural frequencies of the springs are determined by the use of improved Riccati transfer matrix method. The element transfer matrix used in the solution is calculated using the Scaling and Squaring method and Pad'e approximations. Three examples are presented for three types of springs with different cross-sectional shapes under clamped-clamped boundary condition. The accuracy of the proposed method has been compared with the FEM results using three-dimensional solid elements (Solid 45) in ANSYS code. Numerical results reveal that the warping effect is more pronounced in the case of non-cylindrical helical springs than that of cylindrical helical springs, which should be taken into consideration in the free vibration analysis of such springs.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Natalie Waksmanski ◽  
Ernian Pan ◽  
Lian-Zhi Yang ◽  
Yang Gao

An exact closed-form solution of free vibration of a simply supported and multilayered one-dimensional (1D) quasi-crystal (QC) plate is derived using the pseudo-Stroh formulation and propagator matrix method. Natural frequencies and mode shapes are presented for a homogenous QC plate, a homogenous crystal plate, and two sandwich plates made of crystals and QCs. The natural frequencies and the corresponding mode shapes of the plates show the influence of stacking sequence on multilayered plates and the different roles phonon and phason modes play in dynamic analysis of QCs. This work could be employed to further expand the applications of QCs especially if used as composite materials.


Author(s):  
Alok Sinha

Abstract The partial differential equation of motion of an axially moving beam with spatially varying geometric, mass and material properties has been derived. Using the theory of linear time-varying systems, a general algorithm has been developed to compute natural frequencies, mode shapes, and the critical speed for stability. Numerical results from the new method are presented for beams with spatially varying rectangular cross sections with sinusoidal variation in thickness and sine-squared variation in width. They are also compared to those from the Galerkin method. It has been found that critical speed of the beam can be significantly reduced by non-uniformity in a beam’s cross section.


2020 ◽  
Vol 23 (16) ◽  
pp. 3415-3428
Author(s):  
Yusuf Cunedioglu ◽  
Shkelzen Shabani

Free vibration analysis of a single edge cracked multi-layered symmetric sandwich stepped Timoshenko beams, made of functionally graded materials, is studied using finite element method and linear elastic fracture mechanic theory. The cantilever functionally graded beam consists of 50 layers, assumed that the second stage of the beam (step part) is created by machining. Thus, providing the material continuity between the two beam stages. It is assumed that material properties vary continuously, along the thickness direction according to the exponential and power laws. A developed MATLAB code is used to find the natural frequencies of three types of the stepped beam, concluding a good agreement with the known data from the literature, supported also by ANSYS software in data verification. In the study, the effects of the crack location, crack depth, power law gradient index, different material distributions, different stepped length, different cross-sectional geometries on natural frequencies and mode shapes are analysed in detail.


2020 ◽  
Vol 64 ◽  
pp. 49-60
Author(s):  
Mustafa Arda ◽  
Metin Aydogdu

Vibration problem of variable cross-sectional nanorods have been investigated. Analytical solutions have been determined for the variable cross-sectional nanorods for a family of cross-sectional variation. Cross-sectional area variation has been assumed as power function of the axial coordinate. Nonlocal governing equation of motion has been obtained as a second order linear differential equation. Bessel functions have been used in analytical solution of the governing differential equation. Effect of nonlocal and area variation power parameters on dynamics of nanorods have been analyzed. Mode shapes of nanorod have been depicted in various cases and boundary conditions. Present results could be useful at design of atomic force microscope’s probe tip selection.


Author(s):  
Alok Sinha

Abstract The partial differential equation of motion of an axially moving beam with spatially varying geometric, mass and material properties has been derived. Using the theory of linear time-varying systems and numerical optimization, a general algorithm has been developed to compute complex eigenvalues/natural frequencies, mode shapes, and the critical speed for stability. Numerical results from the new method are presented for beams with spatially varying rectangular cross sections with sinusoidal variation in thickness and sine-squared variation in width. They are also compared to those from the Galerkin method. It has been found that critical speed of the beam can be significantly reduced by non-uniformity in a beam's cross section.


Sign in / Sign up

Export Citation Format

Share Document