scholarly journals Shear Bands in Materials Processing: Understanding the Mechanics of Flow Localization From Zener's Time to the Present

2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Koushik Viswanathan ◽  
Shwetabh Yadav ◽  
Dinakar Sagapuram

Abstract Shear banding is a material instability in large strain plastic deformation of solids, where otherwise homogeneous flow becomes localized in narrow micrometer-scale bands. Shear bands have broad implications for materials processing and failure under dynamic loading in a wide variety of material systems ranging from metals to rocks. This year marks 75 years since the publication of Zener and Hollomon's pioneering work on shear bands (Zener and Hollomon, J Appl. Phys., 15, 22–32, 1944), which is widely credited with drawing the attention of the mechanics community to shear bands and related localization phenomena. Since this landmark publication, there has been significant experimental and theoretical investigation into the onset of shear banding. Yet, given the extremely small length and time scales associated with band development, several challenges persist in studying the evolution of single bands, postinitiation. For instance, spatiotemporal development of strain fields in the vicinity of a band, crucial to understanding the transition from localized flow to fracture, has remained largely unexplored. Recent full-field displacement measurements, coupled with numerical modeling, have only begun to ameliorate this problem. This article summarizes our present understanding of plastic flow dynamics around single shear bands and the subsequent transition to fracture, with special emphasis on the postinstability stage. These topics are covered specifically from a materials processing perspective. We begin with a semihistorical look at some of Zener's early ideas on shear bands and discuss recent advances in experimental methods for mapping localized flow during band formation, including direct in situ imaging as well as ex situ/postmortem analyses. Classical theories and analytical frameworks are revisited in the light of recently published experimental data. We show that shear bands exhibit a wealth of complex flow characteristics that bear striking resemblance to viscous fluid flows and related boundary layer phenomena. Finally, new material systems and strategies for reproducing shear band formation at low speeds are discussed. It is hoped that these will help further our understanding of shear band dynamics, the subsequent transition to fracture, and lead to practical “control” strategies for suppressing shear band-driven failures in processing applications.

1997 ◽  
Vol 8 (5) ◽  
pp. 457-483 ◽  
Author(s):  
DAVID G. SCHAEFFER ◽  
MICHAEL SHEARER

The onset of shear-banding in a deforming elastoplastic solid has been linked to change of type of the governing partial differential equations. If uniform material properties are assumed, then (i) deformations prior to shear-banding are uniform, and (ii) the onset of shear-banding occurs simultaneously at all points in the sample. In this paper we study, in the context of a model for anti-plane shearing of a granular material, the effect of a small variation in material properties (e.g. in yield strength) within the sample. Using matched asymptotic expansions, we find that (i) the deformation is extremely non-uniform in a short time period immediately preceding the formation of shear-bands; and (ii) generically, a shear-band forms at a single location in the sample.


Author(s):  
Shwetabh Yadav ◽  
Dinakar Sagapuram

We demonstrate a novel approach to study shear banding in machining at low speeds using a low melting point alloy. In situ imaging and an image correlation method, particle image velocimetry (PIV), are used to capture shear band nucleation and quantitatively analyze the temporal evolution of the localized plastic flow around a shear band. The observations show that the shear band onset is governed by a critical shear stress criterion, while the displacement field around a freshly nucleated shear band evolves in a manner resembling the classical boundary layer formation in viscous fluids. The relevant shear band parameters, the stress at band formation, and local shear band viscosity are presented.


2015 ◽  
Vol 24 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Aggelos C. Iliopoulos ◽  
Nikolaos S. Nikolaidis ◽  
Elias C. Aifantis

AbstractTsallis nonextensive statistics is employed to characterize serrated flow, as well as multiple shear band formation in ultrafine grain (UFG) size materials. Two such UFG materials, a bi-modal Al-Mg alloy and a Fe-Cu alloy, were chosen. In the first case, at low strain rates serrated flow emerges as recorded in the stress-strain graphs, whereas at high strain rates, extensive shear banding occurs. In the second case, multiple shear banding is the only mechanism for plastic deformation, but serrations in the stress-strain graph are not recorded. The analysis aims at the estimation of Tsallis entropic index qstat (stat denotes stationary state), as well as the estimation of fractal dimension. The results reveal that the distributions of serrations and shear bands do not follow Gaussian statistics as implied by Boltzmann-Gibbs extensive thermodynamics, but are approximated instead by Tsallis q-Gaussian distributions, as suggested by nonextensive thermodynamics. In addition, fractal analysis of multiple shear band images reveals a (multi)fractal and hierarchical profile of the spatial arrangement of shear bands.


2005 ◽  
Vol 6-8 ◽  
pp. 737-744 ◽  
Author(s):  
Xin Jian Duan ◽  
Mukesh K. Jain ◽  
M. Bruhis ◽  
David S. Wilkinson

The occurrence of intense shear band is a prelude to failure in many Al-sheet materials. In the present study, a full field optical system measurement technique (digital image correlation) and the finite element method are used to characterize the sequence of deformation in uniaxial tension before and after the intense shear band formation in AA6111-T4. The results indicate good agreement between the measurement and the predictions in terms of shear band width, strain distribution along the gauge length and the failure mode.


Author(s):  
Roa Wen Chen ◽  
Kenneth S. Vecchio

The Al-Li alloy system can provide a unique opportunity to study the thermal history of shear-band formation by following the thermal dissolution of the precipitate phase δ’ (Al3Li) as a function of Li concentration and δ’ solvus temperature. The Al-Li system was chosen primarily for the rather rapid precipitation and dissolution kinetics resulting from the high diffusivity of Li in the Al lattice. δ’ is a spherical, coherent and metastable precipitate which is the main strengthening phase in dilute Al-Li alloys. Although δ’ is metastable, the location of the δ’ solvus in the Al-Li phase diagram has been well documented for dilute Li additions (<5 wt.% Li).e.g.1 The metastable δ’ solvus increases in temperature with increasing Li concentration. As such, the dissolution of δ’ within the shear bands, as a function of Li alloy concentration, can provide an internal temperature probe to study the thermal history of the shear band.


Soft Matter ◽  
2019 ◽  
Vol 15 (22) ◽  
pp. 4548-4561 ◽  
Author(s):  
Robert J. S. Ivancic ◽  
Robert A. Riggleman

Shear band formation often proceeds fracture in amorphous materials. While mesoscale models postulate an underlying defect structure to explain this phenomenon, they do not detail the microscopic properties of these defects especially in strongly confined materials. Here, we use machine learning methods to uncover these microscopic defects in simulated polymer nanopillars.


2012 ◽  
Vol 715-716 ◽  
pp. 158-163 ◽  
Author(s):  
Kenichi Murakami ◽  
N. Morishige ◽  
Kohsaku Ushioda

The effect of cold rolling reduction on shear band formation and crystal orientation within shear bands and annealing texture were investigated in Fe-3%Si {111}<112> single crystals. Several types of shear bands were observed with different angles to rolling direction, dependent on rolling reduction. As for shear band formation, those with smaller angles were formed earlier and those with larger angles were formed later. Regarding crystal orientation along shear bands after rolling reduction, orientation distribution from the initial became large in accordance with reduction and even exceeded Goss orientation when rolling reduction became larger than 40%. After annealing, however, recrystallized grains along shear bands were mainly Goss grains regardless of reduction. The speculated reason for the dominance of Goss after annealing is that Goss subgrains with less density of dislocations were surrounded by largely deformed areas.


2021 ◽  
Vol 9 (11) ◽  
pp. 1158
Author(s):  
Xiaobing Lu ◽  
Xuhui Zhang ◽  
Fangfang Sun ◽  
Shuyun Wang ◽  
Lele Liu ◽  
...  

The occurrence of a shear band is often thought as the precursor of failure. To study the initiation of shear banding in gas hydrate-bearing sediments, two groups of triaxial compression tests combined with a CT (computer tomography) scan were conducted by triaxial CT-integrated equipment under two confining pressures and seven hydrate saturations. The macro stress–strain curves and the corresponding CT scanning images of the micro-structure and the distribution of the components were obtained. The geometric parameters of the shear bands were measured based on the CT images at four typical axial strains, respectively. The distribution characteristics of soil particles, water, hydrate and gas were also analyzed. It is shown that the existence of methane hydrate changes the mechanical property of hydrate-bearing sediment from plastic failure to brittle failure when the hydrate saturation is over 13%, which occurs in the range of the tests in this paper. The peak of the deviatoric stress increases with the hydrate saturation. The shear band is in either a single oblique line or inter-cross lines depending on the hydrate saturation, the effective confining pressure and the initial distribution of the gas hydrate. Most of the shear band surfaces are not straight, and the widths of the shear bands are almost non-uniformly distributed.


2013 ◽  
Vol 703 ◽  
pp. 20-23
Author(s):  
Jian Sheng Gu ◽  
Hui Feng Bo ◽  
Hong Li ◽  
Zhan Xin Zhang

Shear banding characterization of Zr64.13Cu15.75Ni10.12Al10 and Zr65Cu15Ni10Al10 BMGs was studied by using Rockwell indention method. The significant difference in plastic deformation ability can be ascribed to different shear banding features. Meanwhile, by using the fusible coating method, thermal effect on shear bands was investigated. We did not see apparently temperature rise in shear bands of these two BMGs through Rockwell indentation.


2000 ◽  
Vol 2000.1 (0) ◽  
pp. 23-24
Author(s):  
Shokichi KANNO ◽  
Koichi ITO ◽  
Jun NITTA ◽  
Yoshihiro KAMADA ◽  
Taketoshi SAGAWA

Sign in / Sign up

Export Citation Format

Share Document