scholarly journals Support Vector Machines Model of the Nonlinear Hydrodynamics of Fixed Cylinders

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Yu Ma ◽  
Paul D. Sclavounos

Abstract Data-driven modeling is considered as a prospective approach for many conventional physical problems including ocean applications. Among various machine learning techniques, support vector machine stands out as one of the most widely used algorithms to establish models connecting pertinent features to physical quantities of interest. This paper takes the experimental data for a fixed cylinder in shallow water as the baseline data set and explores the modeling of nonlinear wave loads by the support vector machine (SVM) regression method. Different feature and target selections are studied in this paper to establish the nonlinear mapping relations from ambient wave elevations and kinematics to nonlinear wave loads. The performance of the SVM regression model is discussed and compared with nonlinear potential flow theory focusing on the overall statistics (standard deviation and kurtosis), which is critical for fatigue and extreme statistics analysis.

2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


2020 ◽  
Vol 13 (1) ◽  
pp. 130-149
Author(s):  
Puneet Misra ◽  
Siddharth Chaurasia

Stock market movements are affected by numerous factors making it one of the most challenging problems for forecasting. This article attempts to predict the direction of movement of stock and stock indices. The study uses three classifiers - Artificial Neural Network, Random Forest and Support Vector Machine with four different representation of inputs. First representation uses raw data (open, high, low, close and volume), The second uses ten features in the form of technical indicators generated by use of technical analysis. The third and fourth portrayal presents two different ways of converting the indicator data into discrete trend data. Experimental results suggest that for raw data support vector machine provides the best results. For other representations, there is no clear winner regarding models applied, but portrayal of data by the proposed approach gave best overall results for all the models and financial series. Consistency of the results highlight the importance of feature generation and right representation of dataset to machine learning techniques.


2019 ◽  
Vol 11 (16) ◽  
pp. 1943 ◽  
Author(s):  
Omid Rahmati ◽  
Saleh Yousefi ◽  
Zahra Kalantari ◽  
Evelyn Uuemaa ◽  
Teimur Teimurian ◽  
...  

Mountainous areas are highly prone to a variety of nature-triggered disasters, which often cause disabling harm, death, destruction, and damage. In this work, an attempt was made to develop an accurate multi-hazard exposure map for a mountainous area (Asara watershed, Iran), based on state-of-the art machine learning techniques. Hazard modeling for avalanches, rockfalls, and floods was performed using three state-of-the-art models—support vector machine (SVM), boosted regression tree (BRT), and generalized additive model (GAM). Topo-hydrological and geo-environmental factors were used as predictors in the models. A flood dataset (n = 133 flood events) was applied, which had been prepared using Sentinel-1-based processing and ground-based information. In addition, snow avalanche (n = 58) and rockfall (n = 101) data sets were used. The data set of each hazard type was randomly divided to two groups: Training (70%) and validation (30%). Model performance was evaluated by the true skill score (TSS) and the area under receiver operating characteristic curve (AUC) criteria. Using an exposure map, the multi-hazard map was converted into a multi-hazard exposure map. According to both validation methods, the SVM model showed the highest accuracy for avalanches (AUC = 92.4%, TSS = 0.72) and rockfalls (AUC = 93.7%, TSS = 0.81), while BRT demonstrated the best performance for flood hazards (AUC = 94.2%, TSS = 0.80). Overall, multi-hazard exposure modeling revealed that valleys and areas close to the Chalous Road, one of the most important roads in Iran, were associated with high and very high levels of risk. The proposed multi-hazard exposure framework can be helpful in supporting decision making on mountain social-ecological systems facing multiple hazards.


RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61624-61630 ◽  
Author(s):  
N. S. Hari Narayana Moorthy ◽  
Silvia A. Martins ◽  
Sergio F. Sousa ◽  
Maria J. Ramos ◽  
Pedro A. Fernandes

Classification models to predict the solvation free energies of organic molecules were developed using decision tree, random forest and support vector machine approaches and with MACCS fingerprints, MOE and PaDEL descriptors.


The prediction of price for a vehicle has been more popular in research area, and it needs predominant effort and information about the experts of this particular field. The number of different attributes is measured and also it has been considerable to predict the result in more reliable and accurate. To find the price of used vehicles a well defined model has been developed with the help of three machine learning techniques such as Artificial Neural Network, Support Vector Machine and Random Forest. These techniques were used not on the individual items but for the whole group of data items. This data group has been taken from some web portal and that same has been used for the prediction. The data must be collected using web scraper that was written in PHP programming language. Distinct machine learning algorithms of varying performances had been compared to get the best result of the given data set. The final prediction model was integrated into Java application


2021 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
S. L. Ávila ◽  
H. M. Schaberle ◽  
S. Youssef ◽  
F. S. Pacheco ◽  
C. A. Penz

The health of a rotating electric machine can be evaluated by monitoring electrical and mechanical parameters. As more information is available, it easier can become the diagnosis of the machine operational condition. We built a laboratory test bench to study rotor unbalance issues according to ISO standards. Using the electric stator current harmonic analysis, this paper presents a comparison study among Support-Vector Machines, Decision Tree classifies, and One-vs-One strategy to identify rotor unbalance kind and severity problem – a nonlinear multiclass task. Moreover, we propose a methodology to update the classifier for dealing better with changes produced by environmental variations and natural machinery usage. The adaptative update means to update the training data set with an amount of recent data, saving the entire original historical data. It is relevant for engineering maintenance. Our results show that the current signature analysis is appropriate to identify the type and severity of the rotor unbalance problem. Moreover, we show that machine learning techniques can be effective for an industrial application.


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2020 ◽  
Vol 10 (19) ◽  
pp. 6750
Author(s):  
Ditsuhi Iskandaryan ◽  
Francisco Ramos ◽  
Denny Asarias Palinggi ◽  
Sergio Trilles

The growing popularity of soccer has led to the prediction of match results becoming of interest to the research community. The aim of this research is to detect the effects of weather on the result of matches by implementing Random Forest, Support Vector Machine, K-Nearest Neighbors Algorithm, and Extremely Randomized Trees Classifier. The analysis was executed using the Spanish La Liga and Segunda division from the seasons 2013–2014 to 2017–2018 in combination with weather data. Two tasks were proposed as part of this study: the first was to find out whether the game will end in a draw, a win by the hosts or a victory by the guests, and the second was to determine whether the match will end in a draw or if one of the teams will win. The results show that, for the first task, Extremely Randomized Trees Classifier is a better method, with an accuracy of 65.9%, and, for the second task, Support Vector Machine yielded better results with an accuracy of 79.3%. Moreover, it is possible to predict whether the game will end in a draw or not with 0.85 AUC-ROC. Additionally, for comparative purposes, the analysis was also performed without weather data.


Sign in / Sign up

Export Citation Format

Share Document