Research of EGR On Commercial Turbocharged GDI Engine with Intense Tumble Flow

Author(s):  
Congbo Yin ◽  
Quanwei Chen ◽  
Zhendong Zhang ◽  
Haibing Zhu ◽  
Kai Shen

Abstract The application of exhaust gas recirculation (EGR) technology on GDI engines can suppress knocking, reduce fuel consumption, and reduce NOx emissions. The effects of EGR with enhanced intake tumble flow, on the combustion phase, combustion duration, knock index and combustion cycle variation of the engine, were studied at two speeds of 1500 r/min and 2000 r/min from low to medium and to full load. The research shows that although the commercial engine has been well calibrated and optimized, the optimization of EGR and enhanced tumble flow together with the optimization of the ignition angle can improve the engine's economy and emission characteristics, while maintaining relatively fast burning speed and low combustion cycle variation. From medium to heavy load, the economy can be improved by 2.6~10%, and the minimum fuel consumption can be reduced to 213 g/kW.h. Under heavy load conditions (BMEP more than 14 bars), power performance deteriorates due to insufficient boost performance. The 5~20% EGR rate brings 10% power loss. EGR combined with tumble intake has a significant effect on reducing the engine's NOx and CO, with average reductions of 60% and 22%, but HC increased by 32%.

1981 ◽  
Vol 195 (1) ◽  
pp. 369-376 ◽  
Author(s):  
Y Nakajima ◽  
K Sugihara ◽  
Y Takagi ◽  
S Muranaka

The effects of EGR on fuel consumption were analysed quantitatively in terms of factors improving and deteriorating fuel economy through experiments as well as thermodynamic calculations. To examine the effects of combustion duration on fuel economy under heavy EGR, experiments were performed with three engine variations. In calculation models, changes in specific heats, heat transfer rate, and dissociation rate caused by changes in gas temperature were considered. In conclusion, it may be stated that reductions of pumping loss, cooling loss, and dissociation were found to be improving factors, where the contribution ratio was approximately 4.5:4.0:1.5. The sum of calculated fuel economy gain increased steadily as the EGR increased, and reached more than 10 per cent at a 20 per cent EGR under light load condition. On the other hand, a major deteriorating factor was found to be a combustion fluctuation. This combustion fluctuation could be significantly reduced by achieving a ‘fast burn’ through increased turbulence and/or dual point ignition.


2011 ◽  
Vol 66-68 ◽  
pp. 102-107
Author(s):  
Ying Li Zu ◽  
Zheng Xin Zhou ◽  
Hong Yang Yu

Based on 2.0L spark ignition direct-injection(SIDI) turbo charged gasoline engine with variable valve timing(VVT), the spark timing effects on combustion process, fuel consumption, knock limitation and emissions were studied with external exhaust gas recirculation(EGR) on different loads and speeds. For the purpose of easily comparing data results, the location of 50% mass fraction burned(CA50) was widely used in this paper. The study results show that CA50 is changing linearly with spark timing. To reach the same combustion phase, spark timing need to be further advanced with external EGR. Combustion variability of IMEP(COV) increase sharply with retarding of CA50 with external EGR. The external EGR can greatly improve knock limitation and knock intensity(KI). To reach the best fuel consumption, CA50 need to be advanced to 6 °CA to 8 °CA for both with external EGR and without external EGR. NOx emissions increase with advancing of spark timing. HC show different trends when retarding spark timing with and without external EGR.


2015 ◽  
Vol 82 ◽  
pp. 96-102 ◽  
Author(s):  
Sebastiano Breda ◽  
Fabio Berni ◽  
Alessandro d’Adamo ◽  
Francesco Testa ◽  
Elena Severi ◽  
...  

Author(s):  
Alex Oliveira ◽  
Junfeng Yang ◽  
Jose Sodre

Abstract This work evaluated the effect of cooled exhaust gas recirculation (EGR) on fuel consumption and pollutant emissions from a diesel engine fueled with B8 (a blend of biodiesel and Diesel 8:92%% by volume), experimentally and numerically. Experiments were carried out on a Diesel power generator with varying loads from 5 kW to 35 kW and 10% of cold EGR ratio. Exhaust emissions (e.g. THC, NOX, CO etc.) were measured and evaluated. The results showed mild EGR and low biodiesel content have minor impact of engine specific fuel consumption, fuel conversion efficiency and in-cylinder pressure. Meanwhile, the combination of EGR and biodiesel reduced THC and NOX up to 52% and 59%, which shows promising effect on overcoming the PM-NOX trade-off from diesel engine. A 3D CFD engine model incorporated with detailed biodiesel combustion kinetics and NOx formation kinetics was validated against measured in-cylinder pressure, temperature and engine-out NO emission from diesel engine. This valid model was then employed to investigate the in-cylinder temperature and equivalence ratio distribution that predominate NOx formation. The results showed that the reduction of NOx emission by EGR and biodiesel is obtained by a little reduction of the local in-cylinder temperature and, mainly, by creating comparatively rich combusting mixture.


2020 ◽  
Vol 19 (4) ◽  
pp. 305-310
Author(s):  
G. M. Kuharonak ◽  
D. V. Kapskiy ◽  
V. I. Berezun

The purpose of this work is to consider the requirements for emissions of harmful substances of diesel engines by selecting design and adjustment parameters that determine the organization of the workflow, and the exhaust gas cleaning system, taking into account the reduction of fuel consumption. Design elements and geometric characteristics of structures for a turbocharged diesel engine of Д-245 series produced by JSC HMC Minsk Motor Plant (4ЧН11/12.5) with a capacity of 90 kW equipped with an electronically controlled battery fuel injection have been developed: exhaust gas recirculation along the high pressure circuit, shape and dimensions of the combustion chamber, the number and angular arrangement of the nozzle openings in a nozzle atomizer, and inlet channels of the cylinder head. Methods for organizing a workflow are proposed that take into account the shape of the indicator diagrams and affect the emissions of nitrogen oxides and dispersed particles differently. Their implementation allows us to determine the boundary ranges of changes in the control parameters of the fuel supply and exhaust gas recirculation systems when determining the area of minimizing the specific effective fuel consumption and the range of studies for the environmental performance of a diesel engine. The paper presents results of the study on the ways to meet  the requirements for emissions of harmful substances, obtained by considering options for the organization of working processes, taking into account the reduction in specific effective fuel consumption, changes in the average temperature of the exhaust gases and diesel equipment. To evaluate these methods, the following indicators have been identified: changes in specific fuel consumption and average temperature of the toxicity cycle relative to the base cycle, the necessary degree of conversion of the purification system for dispersed particles and NOx. Recommendations are given on choosing a diesel engine to meet Stage 4 emission standards for nitrogen oxides and dispersed particles.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1178
Author(s):  
Hao Guo ◽  
Song Zhou ◽  
Jiaxuan Zou ◽  
Majed Shreka

The combustion emissions of the hydrogen-fueled engines are very clean, but the problems of abnormal combustion and high NOx emissions limit their applications. Nowadays hydrogen engines use exhaust gas recirculation (EGR) technology to control the intensity of premixed combustion and reduce the NOx emissions. This study aims at improving the abnormal combustion and decreasing the NOx emissions of the hydrogen engine by applying a three-dimensional (3D) computational fluid dynamics (CFD) model of a single-cylinder hydrogen-fueled engine equipped with an EGR system. The results indicated that peak in-cylinder pressure continuously increased with the increase of the ignition advance angle and was closer to the top dead center (TDC). In addition, the mixture was burned violently near the theoretical air–fuel ratio, and the combustion duration was shortened. Moreover, the NOx emissions, the average pressure, and the in-cylinder temperature decreased as the EGR ratio increased. Furthermore, increasing the EGR ratio led to an increase in the combustion duration and a decrease in the peak heat release rate. EGR system could delay the spontaneous combustion reaction of the end-gas and reduce the probability of knocking. The pressure rise rate was controlled and the in-cylinder hot spots were reduced by the EGR system, which could suppress the occurrence of the pre-ignition in the hydrogen engine.


2020 ◽  
pp. 146808742096229
Author(s):  
Dominic Parsons ◽  
Simon Orchard ◽  
Nick Evans ◽  
Umud Ozturk ◽  
Richard Burke ◽  
...  

Exhaust gas recirculation (EGR) is proven as a valuable technology for controlling knock whilst maintaining lambda one operation, and is also capable of providing efficiency gains at low load. Despite this few studies in the literature address the question of EGR composition effects, namely whether the EGR gas is sourced from before or after the catalyst, and this remains an area which is often overlooked whilst investigating EGR performance. This paper demonstrates a novel method combining experiment air-path emulation and in-depth data processes to compare the effect of EGR catalysis on the angle of knock onset in a 1L GDI engine. Since initial temperature and pressure have a significant impact on knocking behaviour, an artificial boosting rig replaced the turbomachinery. This enabled fine control over the engine boundary conditions to ensure parity between the catalysed and un-catalysed cases. To overcome the difficulty of comparing stochastic phenomena in an inherently variable dataset, a pairing method was combined with Shahlari and Ghandhi’s angle of knock onset determination method to assess the effects of EGR composition on knock onset for EGR rates ranging from 9% to 18%. The air path emulation system stabilised the engine combustion to provide a suitably rich dataset for analysing knock using the pairing method. Catalysed EGR improved the mean knock onset angle by 0.55 CAD, but due to the inherent variability in cylinder pressure data this only equated to a 58.3% chance of a later knock onset angle for catalysed EGR in any given pair of comparative cycles.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rui Liu ◽  
Haocheng Ji ◽  
Minxiang Wei

Purpose The purpose of this paper is to investigate power performance, economy and hydrocarbons (HC)/carbon monoxide (CO) emissions of diesel fuel on a two-stoke direct injection (DI) spark ignition (SI) engine. Design/methodology/approach Experimental study was carried out on a two-stroke SI diesel-fuelled engine with air-assisted direct injection, whose power performance and HC/CO emissions characteristics under low-load conditions were analysed according to the effects of ignition energy, ignition advance angle (IAA), injection timing angle and excess-air-ratio. Findings The results indicate that, for the throttle position of 10%, a large IAA with adequate ignition energy effectively increases the power and decrease the HC emission. The optimal injection timing angle for power and fuel consumption is 60° crank angle (CA) before top dead centre (BTDC). Lean mixture improves the power performance with the HC/CO emissions greatly reduced. At the throttle position of 20%, the optimal IAA is 30°CA BTDC. The adequate ignition energy slightly improves the power output and greatly decreases HC/CO emissions. Advancing the injection timing improves the power and fuel consumption but should not exceed the exhaust port closing timing in case of scavenging losses. Burning stoichiometric mixture achieves maximum power, whereas burning lean mixture obviously reduces the fuel consumption and the HC/CO emissions. Practical implications Gasoline has a low flash point, a high-saturated vapour pressure and relatively high volatility, and it is a potential hazard near a naked flame at room temperature, which can create significant security risks for its storage, transport and use. The authors adopt a low volatility diesel fuel for all vehicles and equipment to minimise the number of different devices using various fuels and improve the potential military application safety. Originality/value Under low-load conditions, the two stroke port-injected SI engine performance of burning heavy fuels including diesel or kerosene was shown to be worse than those of gasoline. The authors have tried to use the DI method to improve the performance of the diesel-fuelled engine in starting and low-load conditions.


Sign in / Sign up

Export Citation Format

Share Document