MULTIAXIAL FATIGUE OF ALUMINUM DRILL PIPES - EXPERIMENTS AND NUMERICAL ANALYSES

Author(s):  
Marcelo Igor Lourenço ◽  
Theodoro Antoun Netto ◽  
Neilon Silva ◽  
João Carlos Plácido

Abstract This paper presents an experimental test program and numerical analyses conducted on aluminum alloy drill-pipes with two different geometries. Small-scale characterization tests were conducted to determine both the material mechanical properties and the fatigue SN curves. Full-scale fatigue tests of the components are also presented. A finite element model of the drill pipes, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot assembly and the experimental loads in order to obtain the actual stress distribution during the full-scale tests. Maximum stress amplitude in the aluminum pipes was found to be coincident with the edge of the connector, at the same location where failure was observed in full-scale tests. The study revealed that such pipes present a complex stress state near their connection to the steel tool joints due to their geometry and the residual stresses induced during the assembly of the steel connectors onto the aluminum pipes. Finally, multi-axial fatigue models were calibrated with the results of the small-scale tests and applied to the stress-strain state obtained numerically. Theoretical predictions were correlated to full-scale fatigue test results.

Author(s):  
Marcelo Igor Lourenc¸o ◽  
Theodoro A. Netto ◽  
Neilon S. Silva ◽  
Paulo Emi´lio Valada˜o de Miranda ◽  
Joa˜o Carloes Ribeiro Pla´cido

Experimental program and numerical analyses were carried out to investigate the fatigue mechanisms of aluminum drill pipes designed and manufactured in compliance with ISO 15546. Material mechanical properties, including S-N curve, were determined through small-scale tests on specimens cut from actual drill pipes. Full-scale experiments were also performed in laboratory. Initially, the tool-joint assembly procedure was actually performed to monitor the resulting strain/stress level in selected points of the aluminum pipe. Three full-scale aluminum drill pipe specimens were then fatigue tested under combined cyclic bending and constant axial tension. In parallel, a finite element model of the tool-joint region, where two drill pipe specimens failed in the fatigue tests, was developed. The model was first used to reproduce the tool-joint assembly. Then, the physical experiments were simulated numerically in order to obtain the actual stress distribution in this region. Good correlation between full-scale and small-scale fatigue tests was obtained by adjusting the strain/stress levels monitored in the full-scale tests in light of the numerical simulations.


Author(s):  
Marcelo Igor Lourenc¸o ◽  
Theodoro A. Netto ◽  
Joa˜o Carlos Ribeiro Pla´cido

An extensive research program on the structural strength of aluminum drill-pipes is being conducted at COPPE/UFRJ. The main objective is to improve the fatigue performance of these components by selecting the appropriate aluminum alloy and by enhancing the mechanical design of the threaded steel connector. This paper presents the experimental test program and numerical analyses conducted on a drill-pipe of different materials (Al-Zn-Mg alloy) and geometries from those previously presented [1,2]. Small-scale specimens were tested to determine its uni-axial stress-strain and fatigue behavior. Full-scale fatigue test results are also presented. A finite element model of the drill pipe, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot assembly, and then reproduces the physical experiments numerically in order to obtain the actual stress distribution. The correlation between full and small-scale fatigue tests is performed via multi-axial fatigue models. The weak points of the current practice design are highlighted for further development.


Author(s):  
Chris Timms ◽  
Doug Swanek ◽  
Duane DeGeer ◽  
Arjen Meijer ◽  
Ping Liu ◽  
...  

The TurkStream pipeline project is designed to transport approximately 32 billion cubic meters of natural gas annually from Russia to Turkey under the Black Sea, with more than 85% of the deep-water route being deeper than 2000 m. The offshore section is intended to consist of two parallel lines, each approximately 900 km long. The preliminary stages of the front end engineering design (pre-FEED) phase was managed by INTECSEA. To support the analyses and design of the deepest portions, a full scale collapse test program was performed by C-FER Technologies (C-FER). This collapse test program, which included 62 full-scale collapse and pressure+bend tests, 54 medium-scale ring collapse tests, and hundreds of small-scale tests, was primarily aimed at measuring, quantifying and documenting the increase in pipe strength and collapse resistance resulting from the thermal induction heat treatment effect (thermal ageing) that arises during the pipe coating process. Two grades of 32-inch (813 mm) outside diameter (OD) line-pipe, SAWL450 and SAWL485 with wall thicknesses of 39.0 mm or 37.4 mm, respectively, were supplied from various mills for testing. The collapse test program objectives were as follows: • Determine the collapse resistance of line pipes originating from various pipe mills; • Determine the pressure+bend performance of line pipes originating from various pipe mills; • Measure the effect of thermal ageing on material and collapse testing results, including the impact of multiple thermal cycles; and • Evaluate the results of medium-scale ring collapse tests as compared to full-scale tests. This paper presents selected results of this work, along with some comparisons to predictive equations.


Author(s):  
Hans Olav Knagenhjelm ◽  
Oddvin O̸rjasæter ◽  
Per J. Haagensen

The Ormen Lange offshore pipelines from shore to the field go through very difficult terrain creating freespans in the range 40–80m for the 30” lines. For the 6” lines long freespans will be present prior to burial and vortex induced vibrations (VIV) will give a contribution during laying due to strong currents. Using existing codes for fatigue calculation was giving too conservative results compared to the welding technology used and experience from SCR work showed that better S-N data should be expected. A dedicated program was started as part of the Ormen Lange (OL) technology verification program overseen by Norwegian Authorities. An overview of the results is presented here. A full evaluation of the data is not yet complete. Papers will be published later presenting the full technical details and dataprocessing. Fatigue test results from the OL pipeline fatigue verification are presented focusing on the following topics: • Defect sizes in pipeline production welds; • Contractor-A: 5G welding position; • Contractor-B: 2G welding position; • 6” pipe full scale testing; • 30” pipe full scale testing; • Residual stresses; • Crack growth tests and sector specimen fatigue tests in production environments. The following are a summary of the main test variables in the program: • Mapping of actual welding defects compared to AUT results. • Welds with varying misalignment (high/low) and lack of penetration (LOP) from installation contractors tested in air. • Welds with natural welding defects in internal environment (Condensed water and formation water). • Welds with notches made by electrical discharge machining (EDM) (2×65mm and 2×15mm) in internal environment (condensed water and formation water). • Crack growth tests using large compact tension (CT) specimens in air, seawater and internal product environments (condensed water and formation water). • Full scale tests including worst case high/low, LOPs, and tests with normal welds including repair welds. The following main conclusions can be drawn from the work: • Small scale testing with representative worst case defects predicts well large scale testing results with the same features when the small scale specimen stresses are corrected for bending moments etc. arising from the cutout of the pipe. • Full scale testing of 30”×35.5mm wall thickness 2G pipes welded continuously (without start/stop) with worst case defects and high/low exceeds the D curve. • Full-scale tests of 30”×35.5mm wall thickness 5G non continuous welds with worst case defects and high/low exceeds the E curve. • Pipe welds showed low or even compressive residual stresses in the root. For continuously welded pipes the stress levels were low but more varying, also on the cap side. This partly explains the good results. • It is verified that the fatigue loads during operation are below the threshold of crack growth, and thus fatigue will not be a probable failure mechanism. This is under the condition that the measurements of vortex induced vibrations (VIV) during operation confirm the engineering calculations.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


Author(s):  
Patricia Llana ◽  
Richard Stringfellow ◽  
Ronald Mayville

The Office of Research and Development of the Federal Railroad Administration (FRA) and the Volpe Center are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. In recognition of the importance of override prevention in train-to-train collisions in which one of the vehicles is a locomotive, and in light of the success of crash energy management technologies in cab car-led passenger trains, the Volpe Center seeks to evaluate the effectiveness of components that could be integrated into the end structure of a locomotive that are specifically designed to mitigate the effects of a collision and, in particular, to prevent override of one of the lead vehicles onto the other. A research program has been conducted to develop, fabricate and test two crashworthy components for the forward end of a locomotive: (1) a deformable anti-climber, and (2) a push-back coupler. Detailed designs for these components were developed, and the performance of each design was evaluated through large deformation dynamic finite element analysis (FEA). Designs for two test articles that could be used to verify the performance of the component designs in full-scale tests were also developed. The two test articles were fabricated and dynamically tested by means of rail car impact in order to verify certain performance characteristics of the two components relative to specific requirements. The tests were successful in demonstrating the effectiveness of the two design concepts. Test results were consistent with finite element model predictions in terms of energy absorption capability, force-displacement behavior and modes of deformation.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Jens Frohnmüller ◽  
Jens Fischer ◽  
Werner Seim

AbstractThis paper presents new findings on adhesively bonded timber-concrete composites with prefabricated concrete parts. Hereby, timber and concrete are bonded solely with adhesive and no metallic connectors have been used. Because the achievement of a continuous bond proved to be a critical point in past studies, special attention is given to that issue. The application procedure of the adhesives is investigated in small-scale bond samples and the manufacturing process in full-scale composite beams with a span of 8 m and a comparatively new polymer mortar is used as adhesive as well as a common epoxy resin. Both adhesives proved to be suitable, although polymer mortars showed strong advantages in terms of applicability and bridging of gaps in comparison to the less viscous epoxy adhesive. The full-scale beams are tested under quasi-static and cyclic loading. The failure occurred more as a bending failure of the timber or compression failure of the concrete. A full bond could be achieved at all full-scale beams. Moreover, an analytical and a finite element model for the calculation of composite beams are presented and validated. It could be seen, that both deformation behavior and failure load are in good accordance with the test results.


1925 ◽  
Vol 29 (175) ◽  
pp. 299-332
Author(s):  
D. W. Taylor

Aeronautics now covers a large field. The bibliography alone, compiled and published annually by the United States National Advisory Committee for Aeronautics, requires something like two hundred pages of a book seven inches by ten inches. Needless to say, I am not undertaking to review the whole field.Owing to the difficulties of conducting free flight tests of performance and the fact that we cannot afford to make many mistakes in an appliance whose operation involves the risk of human life, it is peculiarly desirable that we may be able to predict the performance of the completed airplane from small-scale experiments; and probably in no other branch of mechanical science have we at present so many research laboratories.


Author(s):  
Satoshi Igi ◽  
Teruki Sadasue ◽  
Kenji Oi ◽  
Satoru Yabumoto ◽  
Shunsuke Toyoda

Newly-developed high quality high frequency electric resistance welded (HFW) linepipes have recently been used in pipelines in reel-lay applications and low temperature service environments because of their excellent low temperature weld toughness and cost effectiveness. In order to clarify the safety performance of these HFW linepipes, a series of full-scale tests including a hydrostatic burst test at low temperature, fatigue test and tension test under high internal pressure was conducted, together with small-scale tests such as impact energy and standard fracture toughness tests, which are generally used in mill production and pre-qualification tests. The Charpy transition curve of the developed HFW pipe occurred at a temperature much lower than −45°C. Based on the low-temperature hydrostatic burst test with a notched weld seam at −45°C, the weld of the HFW linepipe presented the same level of leak-before-break (LBB) behavior, as observed in UOE pipes. A full-pipe fatigue test of HFW pipes with repeated internal pressurizing was conducted. The fatigue strength of the developed HFW linepipe shows better performance than butt weld joints because of the smoothness at its weld portion, which is achieved by mechanical grinding of the weld reinforcement. Full-scale pipe tensile tests of girth welded joints were performed with an artificial surface notch at the heat affected zone in the girth weld. The influence of internal pressure was clearly observed in these tests. Based on the above-mentioned full-scale tests, the safety performance of high quality HFW linepipe is discussed in comparison with the mechanical properties in the small-scale tests such as the Charpy and standard fracture toughness tests, especially when the notch was placed in the welded seam.


1993 ◽  
Vol 11 (1) ◽  
pp. 87-105 ◽  
Author(s):  
James A. Gallagher

Sample screening can be an effective tool for understanding the fire problem of upholstered furniture. A study of the contribution of the com ponents of furniture construction to the heat release will permit the selection of materials which will be more likely to pass full scale tests. Component con tribution is complicated by fabric treatments and the use of interliners. Unless the interaction of these components during the crucial fire propagation phase is understood, no direction for improvement can be obtained from either full or small scale testing. By identifying the relevant interactions the selection of upholstery materials can be made more judiciously. The heat release of selected foam/interliner/fabric combinations, using the Ohio State Heat Release Calorimeter, shows that the heat release contribution of various upholstery components can be identified. For foams covered with fabric, interliners generally improve the performance of those foams which pass California TB 117 while detracting from the performance of those which pass California TB 133 (with no covering). For certain fabrics which melt, the heat release at low flux is independent of the type of foam, or even the presence of foam, when a glass cloth interliner is used. Fabric backings are shown to con tribute to fire propagation, particularly when no interliners are used. Because the heat release increases when the fabric is back-coated, thermal decomposi tion of the underlying foam is increased with an interliner.


Sign in / Sign up

Export Citation Format

Share Document