Measurements of Static and Dynamic Load Performance of a 102 MM Carbon-Graphite Porous Surface Tilting-Pad Gas Journal Bearing

Author(s):  
Luis San Andres ◽  
Jing Yang ◽  
Ryan McGowan

Abstract Aerostatic journal bearings with porous tilting pads enable shaft support with minute drag power losses. To date archival information on the static and dynamic load performance of this bearing type is scant. Thus, the paper presents measurements conducted with an air bearing with diameter 102 mm and comprising four tilting pads made of porous carbon-graphite, each with length = 76 mm. At ambient temperature of 21°C, as the air supply pressure into the bearing pads increases, so does the bearing aerostatic specific load that reaches 58% of the pressure difference. With a supply pressure of 7.8 bar(a), the test bearing static stiffness = 13.1 MN/m, is independent of both shaft speed and static load. While operating with shaft speeds = 6 krpm and 9 krpm and under specific loads to 115 kPa and 101 kPa respectively, dynamic load experiments with excitation frequencies up to 342 Hz show the test bearing supplied with air at 7.8 bar(a) has frequency independent stiffness and damping coefficients. For rotor speeds equaling 0, 6 and 9 krpm, the bearing direct stiffnesses range from 13.6 MN/m to 32.7 MN/m as the specific load increases from 0 kPa to 115 kPa. The direct damping coefficients are as large as 5.8 kN·s/m. The test porous gas bearing reached its intended load capacity, demonstrated a dynamically stable operation and produced force coefficients mainly affected by the pads' pivot supports and the magnitude of air supply pressurization.

2021 ◽  
Author(s):  
Luis San Andrés ◽  
Rachel Bolen ◽  
Jing Yang ◽  
Ryan McGowan

Abstract Aerostatic journal bearings with porous tilting pads enable shaft support with minute drag power losses. To date archival information on the static and dynamic load performance of this bearing type is scant. Thus, the paper presents measurements conducted with an air lubricated bearing with diameter d = 102 mm and comprising four tilting pads made of porous carbon-graphite, each with length L = 76 mm. Two nested Belleville washers resting on spherical pivots support each pad. At ambient temperature of ∼ 21°C, as the air supply pressure into the bearing pads increases, so does the bearing aerostatic specific load (F/(L·d)) that reaches 58% of the pressure difference, supply minus ambient. With an air supply pressure of 7.8 bar(a), the test bearing static stiffness KS = 13.1 MN/m, is independent of both shaft speed and static load. KS is just 63% of the washers’ stiffness KP = 20.6 MN/m (during loading). While operating with shaft speeds equal to 6 krpm and 9 krpm (150 Hz) and under specific loads to 115 kPa and 101 kPa respectively, dynamic load experiments with excitation frequencies up to 342 Hz show the test bearing supplied with air at 7.8 bar(a) has frequency independent stiffness (K) and damping (C) coefficients. For rotor speeds equaling 0, 6 and 9 krpm, the bearing direct stiffnesses KXX ∼ KYY range from 13.6 MN/m to 32.7 MN/m as the specific load increases from 0 kPa to 115 kPa. The direct damping coefficients CXX ∼ CYY are as large as 5.8 kN·s/m, though having a large experimental uncertainty. Bearing cross-coupled force coefficients are insignificant. The test porous gas bearing reached its intended load capacity, demonstrated a dynamically stable operation and produced force coefficients mainly affected by the pads’ pivot supports and the magnitude of air supply pressurization.


2020 ◽  
Vol 36 (3) ◽  
pp. 347-360
Author(s):  
F. Colombo ◽  
F. Della Santa ◽  
S. Pieraccini

ABSTRACTIn this paper, a rectangular aerostatic bearing with multiple supply holes is optimised with a multiobjective optimisation approach. The design variables taken into account are the supply holes position, their number and diameter, the supply pressure, while the objective functions are the load capacity, the air consumption and the stiffness and damping coefficients. A genetic algorithm is applied in order to find the Pareto set of solutions. The novelty with respect to other optimisations which can be found in literature is that number and location of the supply holes is completely free and not associated to a pre-defined scheme. A vector x associated with the supply holes location is introduced in the design parameters and given in input to the optimizer.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Farid Al-Bender ◽  
Federico Colombo ◽  
Dominiek Reynaerts ◽  
Rodrigo Villavicencio ◽  
Tobias Waumans

This paper concerns the dynamic characterization of rubber O-rings used to introduce damping in high speed gas bearing systems. O-shaped rubber rings composed of high temperature rubber compounds are characterized in terms of stiffness and damping coefficients in the frequency range 100–800 Hz. Simple formulas with frequency independent coefficients were identified to express the viscoelastic properties of the O-rings. The formulas proposed approximate the stiffness and damping coefficients of O-rings of general size.


Author(s):  
Chenhui Jia ◽  
Haijiang Zhang ◽  
Shijun Guo ◽  
Ming Qiu ◽  
Wensuo Ma ◽  
...  

According to the gas film force variation law, when the bearing axis is slightly displaced from the static equilibrium position, displacement and velocity disturbance relation expressions for the gas film force increment are constructed. Moreover, combined with the bearing rotor system motion equation, calculation model equations for the gas film stiffness and damping coefficients are established. The axial and radial vibration and velocity of the gas bearings during operation are collected. The instantaneous stiffness and damping coefficients of the gas film are calculated by the rolling iteration algorithm using MATLAB. The dynamic changes in the gas film stiffness and damping under different motion states are analyzed, and the mechanism of the gas film vortex and oscillation is studied. The results demonstrate the following: (1) When the gas bearing is running in the linear steady state in cycle 1, the dynamic pressure effect is enhanced and the stability is improved by increasing the eccentricity; when the gas supply pressure is increased, the static pressure effect is enhanced and the gas film vortex is reduced, but the oscillation is strengthened. (2) With the increase in rotational speed, the gas film vortex force gradually exceeds the gas film damping force, and the stability gradually worsens, causing a fluctuation in the gas film stiffness and damping, following which singularity occurs and a half-speed vortex is formed. Meanwhile, the gas film oscillation is intensified, and the rotor enters the nonlinear stable cycle 2 state operation. (3) As the fluctuation of the film force increases, the instantaneous stiffness and damping oscillation of the film intensifies, most of the stiffness and damping coefficients exhibit distortion, and the rotor operation will enter a chaotic or unstable state. Therefore, the gas bearing stiffness and damping variation characteristics can be used to study and predict the gas bearing operating state. Finally, measures for reducing the vortex and oscillation of the gas film and improving the stability of the gas bearing operation are proposed.


1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


2004 ◽  
Vol 126 (2) ◽  
pp. 326-333 ◽  
Author(s):  
Dara W. Childs ◽  
Jonathan Wade

Selected test results are presented for an annular gas seal using a smooth rotor and a hole-pattern-roughness stator for a supply pressure of 70 bar, three pressure ratios, three speeds up to 20,000 rpm, two clearances, and three preswirl ratios. Dynamic data include frequency-dependent direct and cross-coupled stiffness and damping coefficients. Static data include leakage and upstream and downstream pressures and temperatures. Very good agreements are found between measurements and predictions from a two-control-volume bulk-flow model.


Author(s):  
Bugra Ertas ◽  
Adolfo Delgado

The following work advances a new concept for a hermetically sealed squeeze film damper (HSFD), which does not require an open-flow lubrication system. The hermetically sealed concept utilizes a submersed plunger within a contained fluidic cavity filled with incompressible fluid and carefully controlled end plate clearances to generate high levels of viscous damping. Although the application space for a hermetic damper can be envisioned to be quite broad, the context here will target the use of this device as a rotordynamic bearing support damper in flexibly mounted gas bearing systems. The effort focused on identifying the stiffness and damping behavior of the damper while varying test parameters such as excitation frequency, vibration amplitude, and end plate clearance. To gain further insight to the damper behavior, key dynamic pressure measurements in the damper land were used for identifying the onset conditions for squeeze film cavitation. The HSFD performance is compared to existing gas bearing support dampers and a conventional open-flow squeeze film dampers (SFD) used in turbomachinery. The damper concept yields high viscous damping coefficients an order of magnitude larger than existing oil-free gas bearing supports dampers and shows comparable damping levels to current state of the art open-flow SFD. The force coefficients were shown to contribute frequency-dependent stiffness and damping coefficients while exhibiting amplitude independent behavior within operating regimes without cavitation. Finally, using experimentally based force density calculations, the data revealed threshold cavitation velocities, approximated for the three end seal clearance cases. To complement the experimental work, a Reynolds-based fluid flow model was developed and is compared to the HSFD damping and stiffness results.


Author(s):  
Luis San Andrés ◽  
Travis A. Cable ◽  
Yong Zheng ◽  
Oscar De Santiago ◽  
Drew Devitt

Gas bearings are an attractive means of load support for rotating machinery due to their low mechanical power losses and dispensing of expensive lubrication systems. A subset of gas bearing technology, porous type gas bearings utilize a porous material as a means of feeding externally pressurized gas (typically air) to the bearing clearance region. When compared to typical orifice type hydrostatic bearings, porous bearings distribute pressurized gas more uniformly into the film clearance, thus resulting in a higher load capacity for similar flow rates [1]. The majority of the literature on porous type gas bearings focuses on the numerical evaluation of cylindrical bushings, yet experimental data on their performance is scant. As a follow up to Ref. [2], the paper presents an analysis of measurements of flow, drag torque and rotordynamic response of a large (100 mm OD, ∼275 N) rotor supported on two tilting pad (five-pad) porous journal bearings (specific load∼19 kPa). Measurements of air mass flow into the bearings, with and without the rotor in place, show that the film clearance offers little restriction. The mass flow rate is proportional to the supply pressure and lead to an estimated permeability coefficient. In operation with various levels of supply pressure and with the rotor spinning to 8 krpm (133 Hz, surface speed ∼42 m/s), several rotordynamic response tests (masses up to 6.9 gram) show the rotor amplitude of synchronous response is proportional to the mass imbalance; hence demonstrating the system is linear. Finally, rotor speed coast down tests from 8 krpm show that the bearings offer little drag friction; and increasing the supply pressure gives to lesser drag. The measurements verify the pair of gas bearings support effectively the rigid rotor with little expense in mass flow rate delivered to them. Most importantly, while operating at 10 krpm with a large added imbalance, the system survived a seizure event with little damage to the rotor and bearings, both restored to a near pristine condition after a simple cleaning procedure.


1968 ◽  
Vol 90 (4) ◽  
pp. 793-803 ◽  
Author(s):  
J. W. Lund

The dynamic characteristics of a gas bearing can be represented by a set of spring and damping coefficients (impedances) which are functions of the static load on the bearing, the rotating speed and the whirl frequency of the journal. For a rotor supported in gas bearings, these coefficients can be used directly in a critical speed calculation or an unbalance response calculation. In addition, the coefficients can be employed in a stability investigation. The paper gives the computational method for obtaining the spring and damping coefficients and, also, describes how they are used in rotor calculations and stability studies. Numerical results are given in graphical and tabular form for a tilting pad journal bearing and a three-lobe journal bearing.


Sign in / Sign up

Export Citation Format

Share Document