Experimental Study of a Novel Centrifugal Compressor with Two Successive and Independent Rotors

Author(s):  
Van-Thang Nguyen ◽  
Cheikh Brahim Abed ◽  
Amélie Danlos ◽  
Florent Ravelet ◽  
Richard Paridaens ◽  
...  

Abstract The present study deals with a low pressure-ratio centrifugal compressor consisting of two counter-rotating rotors called a Counter-Rotating Centrifugal Compressor (CRCC). The design method based on the loss model was presented to determine the geometric parameters of the two counter-rotating rotors. According to this method, the rotor of a selected Single Rotor Centrifugal Compressor (SRCC) has been redesigned into two counter-rotating rotors (upstream and downstream rotors) by choosing the value of meridional Length Ratio (LR). The meridional view, the volute shape, and the operating parameters of SRCC are preserved during the design process. In the first step, the counter-rotating mode at a constant rotor speed of 11k rpm has been carried out. The overall characteristics of CRCC are compared to those of SRCC. In the second step, the map-characteristic of CRCC is established for seven speed ratios. The results show that CRCC increases up to 4,6% for the pressure ratio and 3.5% for the efficiency compared to SRCC at the same tip-speed. In addition, CRCC can operate at a lower tip-speed by about 2k rpm to produce the same characteristics as SRCC, with better efficiency over a wide range of flow rates. However, the surge margin of the CRCC is shifted to higher flow rates. This disadvantage of the CRCC was solved by choosing the adequate pair of the rotational speeds of the two rotors that will be presented in other publication.

Author(s):  
A. Whitfield ◽  
F. J. Wallace ◽  
R. C. Atkey

Two variable geometry techniques have been applied to a small turbocharger compressor, with the objective of trying to move the peak pressure ratio operating point to lower flow rates, thereby yielding a broad flow range map. Variable prewhirl guide vanes and variable vaneless diffuser passage height have been studied separately. The results obtained with both techniques are compared and the relative merits and demerits with respect to improved flow range and isentropic efficiency penalties are considered.


Author(s):  
C. Xu ◽  
R. S. Amano

An unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and a large surge margin flow coefficient of 0.145 centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design demonstrated to be successful to extend the low solidarity diffusers to high-pressure ratio compressor. The design performance range showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The experimental results showed that the test results are in good agreement with the design.


Author(s):  
C. Xu ◽  
R. S. Amano

A low flow coefficient unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a low flow coefficient centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and large surge margin low flow coefficient (0.145) centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design is successful to extend the low solidarity diffusers to high-pressure ratio compressor. It is demonstrated that the design is in a great success. The design performance range of the total to static efficiency of the compressor is about 85% and stability range is over 35%. The experimental results showed that the test results are in good agreement with the design.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2711 ◽  
Author(s):  
Nima Khoshkalam ◽  
Mohammad Mojaddam ◽  
Keith R. Pullen

The performance of an automotive turbocharger centrifugal compressor has been studied by developing a comprehensive one-dimensional (1D) code as verified through experimental results and a three-dimensional (3D) model. For 1D analysis, the fluid stream in compressor is modeled using governing gas dynamics equations and the loss mechanisms have been investigated and added to the numerical model. The objective is to develop and offer a 1D model, which considers all loss mechanisms, slip, blockage and also predicts the surge margin and choke conditions. The model captures all features from inlet duct through to volute discharge. Performance characteristics are obtained using preliminary geometry and the blade characteristics. A 3D numerical model was also created and a viscous solver used for investigating the compressor characteristics. The numerical model results show good agreement with experimental data through compressor pressure ratio and efficiency. The effect of the main compressor dimensions on compressor performance has been investigated for wide operating range and the portions of each loss mechanism in the impeller. Higher pressure ratio is achievable by increasing impeller blade height at outlet, impeller blade angle on inlet, diffuser outlet diameter and by decreasing impeller shroud diameter at inlet and blade angle at outlet. These changes may cause unfavorable consequences such as a lower surge margin or shorter operating range, which should be compromised with favorable changes. At lower rotational speeds, impeller skin friction mainly impacts the performance and at higher rotational speeds, impeller diffusion, blade loading and recirculation losses are more important. The results allow the share of each loss mechanism to be quantified for different mass flow rates and rotational speed, shedding new light on which losses are most important for which conditions. For a turbocharger, which must operate over a wide range of conditions, these results bring new insight to engineers seeking to optimize the compressor design as part of an internal combustion engine system.


Author(s):  
C. Xu ◽  
R. S. Amano

A low flow coefficient unshrouded centrifugal compressor would give up clearance very large in relation to the span of the blades, because centrifugal compressors produce a sufficiently large pressure rise in fewer stages. This problem is more acute for a low flow high-pressure ratio impeller. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range for a low flow coefficient centrifugal compressor is a great challenge. This paper describes a new development of high efficiency and large surge margin low flow coefficient (0.145) centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in this centrifugal compressor design. The new compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A three-dimensional low solidity diffuser design method is proposed and applied to this design. This design is successful to extend the low solidarity diffusers to high-pressure ratio compressor. It is demonstrated that the design is in a great success. The design performance range of the total to static efficiency of the compressor is about 85% and stability range is over 35%. The experimental results showed that the test results are in good agreement with the design.


Author(s):  
Peng Wang ◽  
Mehrdad Zangeneh ◽  
Bryn Richards ◽  
Kevin Gray ◽  
James Tran ◽  
...  

Engine downsizing is a modern solution for the reduction of CO2 emissions from internal combustion engines. This technology has been gaining increasing attention from industry. In order to enable a downsized engine to operate properly at low speed conditions, it is essential to have a compressor stage with very good surge margin. The ported shroud, also known as the casing treatment, is a conventional way used in turbochargers to widen the working range. However, the ported shroud works effectively only at pressure ratios higher than 3:1. At lower pressure ratio, its advantages for surge margin enhancements are very limited. The variable inlet guide vanes are also a solution to this problem. By adjusting the setting angles of variable inlet guide vanes, it is possible to shift the compressor map toward the smaller flow rates. However, this would also undermine the stage efficiency, require extra space for installing the inlet guide vanes, and add costs. The best solution is therefore to improve the design of impeller blade itself to attain high aerodynamic performances and wide operating ranges. This paper reports a recent study of using inverse design method for the redesign of a centrifugal compressor stage used in an electric supercharger, including the impeller blade and volute. The main requirements were to substantially increase the stable operating range of the compressor in order to meet the demands of the downsized engine. The three-dimensional (3D) inverse design method was used to optimize the impeller geometry and achieve higher efficiency and stable operating range. The predicted performance map shows great advantages when compared with the existing design. To validate the computational fluid dynamics (CFD) results, this new compressor stage has also been prototyped and tested. It will be shown that the CFD predictions have very good agreement with experiments and the redesigned compressor stage has improved the pressure ratio, aerodynamic efficiency, choke, and surge margins considerably.


2005 ◽  
Vol 127 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Gary J. Skoch

Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at −8, 0, and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested, and generally diminished as injection rate increased. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Resistance and flow range both increased as the injector orientation was turned toward radial. Leading edge loading and semivaneless space diffusion showed trends that are similar to those reported earlier from shroud surface experiments that did improve compressor range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that stability factors cited in the discussion of shroud surface techniques are valid. The results also suggest that a different application of hub-side techniques may produce a range improvement in centrifugal compressors.


Author(s):  
Ziliang Li ◽  
Xingen Lu ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
...  

Centrifugal compressors often suffer relatively low efficiency and a terrible operating range particularly due to the complex flow structure and intense impeller/diffuser interaction. Numerous studies have focused on improving the centrifugal compressor performance using many innovative ideas, such as the tandem impeller, which has become increasingly attractive due to its ability to achieve the flow control with no additional air supply configurations and control costs in compressor. However, few studies that attempted to the investigation of tandem impeller have been published until now and the results are always contradictory. To explore the potential of the tandem impeller to enhance the compressor performance and the underlying mechanism of the flow phenomena in the tandem impellers, this paper numerically investigated a high-pressure-ratio centrifugal compressor with several tandem impellers at off-design operating speeds. The results encouragingly demonstrate that the tandem impeller can achieve a performance enhancement over a wide range of operating conditions. Approximately 1.8% maximum enhancement in isentropic efficiency and 5.0% maximum enhancement in operating range are achieved with the inducer/exducer circumferential displacement of [Formula: see text] = 25% and 50%, respectively. The observed stage performance gain of the tandem impellers decreases when the operating speed increases due to the increased inducer shock, increased wake losses, and deteriorated tandem impeller discharge flow uniformity. In addition, the tandem impeller can extend the impeller operating range particularly at low rotation speeds, which is found to be a result from the suppression of the low-momentum fluid radial movement. The results also indicate that the maximum flux capacity of the tandem impeller decreases due to the restriction of the inducer airfoil Kutta–Joukowsky condition.


Author(s):  
Hong Won Kim ◽  
Jae Hoon Chung ◽  
Hyo Seong Lee ◽  
Min Ouk Choi

The primary design goal of a compressor is focused on improving efficiency. Secondary objective is to widen the compressor’s operating range. This paper presents a numerical and experimental investigation of the influence of the bleed slot to enlarge operating range for the 1.2MW class centrifugal compressor installed in a turbocharger. The main design parameters of the bleed slot casing are upstream slot position, inlet pipe slope, downstream slot position and width. The DOE (design of experiment) method was carried out to optimize the casing design. Numerical analyses were done by the commercial code ANSYS-CFX based on the three dimensional Reynolds-averaged Navier-Stokes equations. From the analysis, as the downstream slot position and width are smaller and upstream position is located away from impeller inlet, efficiency and pressure ratio are increased. Experimental works were done with and without the bleed slot casing. The simulation results were in good agreement with the test data. In case without the bleed slot casing, the surge margin value came out to be only 11.8% but with the optimized bleed slot design, the surge margin reached 23%. Therefore, the surge margin increase of 11.2% was achieved.


1990 ◽  
Vol 112 (1) ◽  
pp. 25-29 ◽  
Author(s):  
H. Hayami ◽  
Y. Senoo ◽  
K. Utsunomiya

Low-solidity circular cascades, conformally transformed from high-stagger linear cascades of double-circular-arc vanes with solidity 0.69, were used as a part of the diffuser system of a transonic centrifugal compressor. Performance test results were compared with data of the same compressor with a vaneless diffuser. Good compressor performance and a wider flow range as well as a higher pressure ratio and a higher efficiency, superior to those with a vaneless diffuser, where the flow range was limited by choke of the impeller, were demonstrated. The test circular cascade diffusers demonstrated a good pressure recovery over a wide range of flow angles, even when the inflow Mach number to the cascade was over unity.


Sign in / Sign up

Export Citation Format

Share Document