Failure Mode Determination of API 12F Shop-Welded Tanks with a New Roof-to-Shell Junction Detail

Author(s):  
Heyi Feng ◽  
Sukru Guzey

Abstract The API 12F is the specification for vertical, aboveground shop-welded storage tanks published by the American Petroleum Institute (API). The nominal capacity for the twelve tank designs given in the current 13th edition of API 12F ranges from 90 bbl. (14.3 m3) to 1000 bbl. (159 m3). The minimum required component thickness and design pressure levels are also provided in the latest edition. This study is a part of a series research project sponsored by API that dedicates to ensure the safe operation of API 12 series storage tanks. In this study, the twelve API 12F tank designs presented in the latest edition are studied. The elastic stress analysis was conducted following the procedures presented in the ASME Boiler and Pressure Vessel Code 2019, Section VIII, Division 2 (ASME VIII-2). The stress levels at the top, bottom, and cleanout junctions subject to the design pressures are determined through finite element analysis (FEA). The bottom uplift subjected to design pressures are obtained, and the yielding pressure at the roof-shell and shell-bottom junctions are also determined. The specific gravity of the stored liquid is raised from 1.0 to 1.2 in this study. A new roof-shell attachment detail is proposed, and a 0.01 in. (0.254 mm) gap between the bottom shell course and the bottom plate is modeled to simulate the actual construction details. In addition, the flat-top rectangular cleanout presented in the current edition of API 12F is modeled.

Author(s):  
Dipak K. Chandiramani ◽  
Suresh K. Nawandar ◽  
Shyam Gopalakrishnan

Various methods have been in use for the determination of stresses at the nozzle-shell junction due to external loads and moments. Some methods evaluate stress in the cylindrical or spherical shell (e.g. WRC 107 now WRC 537) while others evaluate stresses in cylindrical shells and nozzles (e.g. WRC 297). ASME Section VIII Division. 2 specifies use of WRC 107/WRC 297 or Finite Element Analysis (FEA) for determination of stresses at shell-nozzle junctions with external loads and moments on the nozzle. Each method could yield a different result for the same loading condition and geometry and this has been recognized in comparisons made in WRC 297 with WRC 107 and FEA. Further, customized FEA software are also available for this analysis. There still seems to be some confusion in users of these methods regarding selection of method for optimization of design. Users not familiar with Finite Element Method prefer to use calculations based on WRC 107/297. Hang-Sung Lee, et.al. have recently (PVP 2011 – 57407) analyzed nozzle shell junctions using the Finite Element Method, compared their results with calculations to WRC 297 and made recommendations. The work presented in this paper is not an attempt to compare individual stresses obtained by classical versus analytical methods. Instead, an attempt has been made to consolidate the results obtained by the various methods into charts to enable a user to make a preliminary assessment to ascertain under what geometrical conditions the calculations made by each of the above methods would result in overall Code acceptable stresses without the results being either overly conservative or un-conservative. This is particularly relevant to the geometries which use the graphs and charts which have been extrapolated without rigorous theoretical background in the WRC Bulletin 537. The Finite Element Method has been used as the referee method.


2021 ◽  
Author(s):  
Gurumurthy Kagita ◽  
Krishnakant V. Pudipeddi ◽  
Subramanyam V. R. Sripada

Abstract The Pressure-Area method is recently introduced in the ASME Boiler and Pressure Vessel (B&PV) Code, Section VIII, Division 2 to reduce the excessive conservatism of the traditional area-replacement method. The Pressure-Area method is based on ensuring that the resistive internal force provided by the material is greater than or equal to the reactive load from the applied internal pressure. A comparative study is undertaken to study the applicability of design rules for certain nozzles in shells using finite element analysis (FEA). From the results of linear elastic FEA, it is found that in some cases the local stresses at the nozzle to shell junctions exceed the allowable stress limits even though the code requirements of Pressure-Area method are met. It is also found that there is reduction in local stresses when the requirement of nozzle to shell thickness ratio is maintained as per EN 13445 Part 3. The study also suggests that the reinforcement of nozzles satisfy the requirements of elastic-plastic stress analysis procedures even though it fails to satisfy the requirements of elastic stress analysis procedures. However, the reinforcement should be chosen judiciously to reduce the local stresses at the nozzle to shell junction and to satisfy other governing failure modes such as fatigue.


1980 ◽  
Vol 102 (1) ◽  
pp. 98-106 ◽  
Author(s):  
G. J. Mraz ◽  
E. G. Nisbett

Steels at present included in Sections III and VIII of the ASME Boiler and Pressure Vessel Code severely limit its application for high-pressure design. An extension of the well-known AISI 4300 series low alloy steels has long been known as “Gun Steel.” These alloys, which are generally superior to AISI 4340, offer good harden-ability and toughness and have been widely used under proprietary names for pressure vessel application. The ASTM Specification A-723 was developed to cover these nickel-chromium-molybdenum alloys for pressure vessel use, and is being adopted by Section II of the ASME Boiler and Pressure Vessel Code for use in Section VIII, Division 2, and in Section III in Part NF for component supports. The rationale of the specification is discussed, and examples of the mechanical properties obtained from forgings manufactured to the specification are given. These include the results of both room and elevated temperature tension tests and Charpy V notch impact tests. New areas of applicability of the Code to forged vessels for high-pressure service using these materials are discussed. Problems of safety in operation of monobloc vessels are mentioned. Procedures for in-service inspection and determination of inspection intervals based on fracture mechanics are suggested.


Author(s):  
Susumu Terada

The current upper limit of hydrostatic test pressure in KT-3 of ASME Sec. VIII Division 3 is determined by general yielding through the thickness obtained by Nadai’s equation with a design factor of 0.866 (= 1.732/2). On the other hand, the upper limit of hydrostatic test pressure in 4.1.6 of the ASME Sec. VIII Division 2 is determined by general yielding through the thickness with a design factor of 0.95. In cases where a ratio of hydrostatic test pressure to design pressure of 1.43 similar to PED (Pressure Equipment Directive) is requested, the upper limit of hydrostatic test pressure may be critical for vessel design when material with a ratio of yield strength to tensile strength less than 0.7 is used. In order to satisfy the requirements in KT-3, it is necessary to decrease design pressure or increase wall thickness. Therefore, it is proposed to change the design factor of intermediate strength materials to obtain the upper limit of hydrostatic test pressure. In this paper, a new design factor to obtain the upper limit of hydrostatic test pressure is proposed and the validity of this proposal was investigated by burst test results and elastic-plastic analysis.


Author(s):  
Radoslav Stefanovic ◽  
Alicia Avery ◽  
Kanhaiya Bardia ◽  
Reza Kabganian ◽  
Vasile Oprea ◽  
...  

Today’s hydroprocessing reactor manufacturers use 2¼Cr–1Mo–¼V steel to build lighter reactors than conventional Cr-Mo reactors. Manufacturing even lighter hydroprocessing reactors has been enabled with the introduction of the new ASME Section VIII Division 2 Code, initially released in 2007. The higher allowable stresses in the new Division 2 for these Vanadium-modified steels permits even lighter reactors to be built while maintaining suitable design margins. The new Division 2 Code requires additional engineering to ensure safe design. One of the challenges the engineer is faced with, is preparation of the User’s Design Specification (UDS) including new and more stringent requirements for fatigue evaluation. As the operating temperature of the rector is higher than 371°C, engineers have to evaluate the fatigue life of the reactor in accordance with Code Case 2605 (CC2605). CC2605 requires inelastic analysis and evaluation effects of creep. Vanadium-modified reactors require additional care during fabrication to prevent higher hardness around weld areas, reheat cracking, and reduced toughness at lower temperatures in the “as welded” condition. This paper provide guidance for the preparation of an ASME Section VIII Division 2 User’s Design Specification including process descriptions of all the cycles expected for the life of the rector and analysis requested by CC2605. An example of such an analysis, including finite element analysis results, is provided in this paper. Requirements to provide the material specification is also discussed with an emphasis on prevention of reheat cracking, hardenability, and temper and hydrogen embitterment.


2014 ◽  
Vol 598 ◽  
pp. 194-197
Author(s):  
Hong Jun Li ◽  
Qiang Ding ◽  
Xun Huang

Stress linearization is used to define constant and linear through-thickness FEA (Finite Element Analysis) stress distributions that are used in place of membrane and membrane plus bending stress distributions in pressure vessel Design by Analysis. In this paper, stress linearization procedures are reviewed with reference to the ASME Boiler & Pressure Vessel Code Section VIII Division 2 and EN13445. The basis of the linearization procedure is stated and a new method of stress linearization considering selected stress tensors for linearization is proposed.


Author(s):  
Ihab F. Z. Fanous ◽  
R. Seshadri

The ASME Code Section III and Section VIII (Division 2) provide stress classification guidelines to interpret the results of a linear elastic finite element analysis. These guidelines enable the splitting of the generated stresses into primary, secondary and peak. The code gives some examples to explain the suggested procedures. Although these examples may reflect a wide range of applications in the field of pressure vessel and piping, the guidelines are difficult to use with complex geometries. In this paper, the r-node method is used to investigate the primary stresses and their locations in both simple and complex geometries. The method is verified using the plane beam and axisymmetric torispherical head. Also, the method is applied to analyze 3D straight and oblique nozzle modeled using both solid and shell elements. The results of the analysis of the oblique nozzle are compared with recently published experimental data.


2001 ◽  
Vol 124 (1) ◽  
pp. 59-65
Author(s):  
Shoichi Yoshida

The bottom plate of aboveground oil storage tanks can bulge, separating from the foundation due to welding deformation. When such a bulge is subjected to liquid pressure, it deforms continuously to make contact with the foundation from the edge, and the remaining area of the bulge decreases with increasing liquid pressure. As a result, the deformation is extremely localized and plastic strain occurs at the bulge. This paper presents a plane strain finite element analysis for the evaluation of localized bottom bulges in aboveground oil storage tanks. Load-incremental, elastic-plastic large deformation analysis is carried out considering the bottom plate contact with the foundation. The relationship of the plastic strain at the bulged bottom plate to the liquid pressure is discussed together with the deformation of the bulge. As a result, the bottom plate thickness has a significant effect on the deformation, but the bulged height does not. After the bulged center makes contact with the foundation, the stress and strain do not increase with increasing liquid pressure. In addition, the permissible bulged profile specified by API Standard 653 elastically deforms to make contact with the foundation under low liquid pressure.


Author(s):  
Shoichi Yoshida ◽  
Kazuhiro Kitamura

The 2003 Tokachi-Oki earthquake caused severe damage to oil storage tanks due to liquid sloshing. Six single-deck floating roofs had experienced structural problems as evidenced by sinking failure in large diameter tanks at the refinery in Tomakomai, Japan. The pontoon of floating roof might be buckled due to circumferential bending moment during the sloshing. The content in the tank was spilled on the floating roof from small failures which might be caused in the lap-welded joints or in the stress concentrated parts of the pontoon bottom plate by the buckling. Then the floating roof began to lose buoyancy and submerged into the content slowly. The failure of the roof expanded gradually in the sinking process. It is presumed that the initial small failures were caused by the elastic buckling of the pontoon due to circumferential bending moment. In this paper, the buckling strength of the pontoon is presented using axisymmetric shell finite element analysis. Linear elastic bifurcation buckling analyses are carried out and the buckling characteristics of ring stiffened pontoons are investigated.


Author(s):  
Soheil Manouchehri ◽  
Jason Potter

Pipe-In-Pipe (PIP) systems are increasingly used where the primary objective is to prevent wax deposition and/or hydrate formation and to achieve a low Overall Heat Transfer Coefficient (OHTC) value. PIP systems are also increasingly considered as an additional protective layer against loss of containment (e.g. in Arctic pipelines) or to withstand the interaction of a third party (e.g. trawl gear impact) in lieu of costly pipeline burial. At the end of each PIP section, either at a midline connection or end point tie-in, bulkheads are used as a way of transition from a double wall (PIP) system to a single wall (hub in the subsea structure) system. End bulkheads are designed using detailed Finite Element Analysis (FEA) in accordance with more stringent Pressure Vessel Codes (PVC) and manufactured by forging followed by heat treatment and detailed machining to the required dimensions. As the design of end bulkheads does not fall under the Pipeline Codes, a distinction (so called “code break”) may be required on where the governing code changes from the PVC to a Pipeline Code. This paper firstly discusses the application and validity of internationally known PVCs (ASME BPVC Section VIII Division 2 [1], BS EN 13445 [2], PD 5500 [3]) that can be used in the design of end bulkheads. This is then shown in practice by using an example of a typical end bulkhead, designed to various PVCs. Finally, results are compared and conclusions and recommendations are made.


Sign in / Sign up

Export Citation Format

Share Document