Multi-Objective Optimization Under Uncertainty of Part Quality in Fused Filament Fabrication

Author(s):  
Berkcan Kapusuzoglu ◽  
Paromita Nath ◽  
Matthew Sato ◽  
Sankaran Mahadevan ◽  
Paul Witherell

Abstract This work presents a data-driven methodology for multi-objective optimization under uncertainty of process parameters in the fused filament fabrication (FFF) process. The proposed approach optimizes the process parameters with the objectives of minimizing the geometric inaccuracy and maximizing the filament bond quality of the manufactured part. First, experiments are conducted to collect data pertaining to the part quality. Then, Bayesian neural network (BNN) models are constructed to predict the geometric inaccuracy and bond quality as functions of the process parameters. The BNN model captures the model uncertainty caused by the lack of knowledge about model parameters (neuron weights) and the input variability due to the intrinsic randomness in the input parameters. Using the stochastic predictions from these models, different robustness-based design optimization formulations are investigated, wherein process parameters such as nozzle temperature, nozzle speed, and layer thickness are optimized under uncertainty for different multi-objective scenarios. Epistemic uncertainty in the prediction model and the aleatory uncertainty in the input are considered in the optimization. Finally, Pareto surfaces are constructed to estimate the trade-offs between the objectives. Both the BNN models and the effectiveness of the proposed optimization methodology are validated using actual manufacturing of the parts.

Author(s):  
Amir M. Aboutaleb ◽  
Mark A. Tschopp ◽  
Prahalad K. Rao ◽  
Linkan Bian

The goal of this work is to minimize geometric inaccuracies in parts printed using a fused filament fabrication (FFF) additive manufacturing (AM) process by optimizing the process parameters settings. This is a challenging proposition, because it is often difficult to satisfy the various specified geometric accuracy requirements by using the process parameters as the controlling factor. To overcome this challenge, the objective of this work is to develop and apply a multi-objective optimization approach to find the process parameters minimizing the overall geometric inaccuracies by balancing multiple requirements. The central hypothesis is that formulating such a multi-objective optimization problem as a series of simpler single-objective problems leads to optimal process conditions minimizing the overall geometric inaccuracy of AM parts with fewer trials compared to the traditional design of experiments (DOE) approaches. The proposed multi-objective accelerated process optimization (m-APO) method accelerates the optimization process by jointly solving the subproblems in a systematic manner. The m-APO maps and scales experimental data from previous subproblems to guide remaining subproblems that improve the solutions while reducing the number of experiments required. The presented hypothesis is tested with experimental data from the FFF AM process; the m-APO reduces the number of FFF trials by 20% for obtaining parts with the least geometric inaccuracies compared to full factorial DOE method. Furthermore, a series of studies conducted on synthetic responses affirmed the effectiveness of the proposed m-APO approach in more challenging scenarios evocative of large and nonconvex objective spaces. This outcome directly leads to minimization of expensive experimental trials in AM.


2021 ◽  
Vol 11 (10) ◽  
pp. 4575
Author(s):  
Eduardo Fernández ◽  
Nelson Rangel-Valdez ◽  
Laura Cruz-Reyes ◽  
Claudia Gomez-Santillan

This paper addresses group multi-objective optimization under a new perspective. For each point in the feasible decision set, satisfaction or dissatisfaction from each group member is determined by a multi-criteria ordinal classification approach, based on comparing solutions with a limiting boundary between classes “unsatisfactory” and “satisfactory”. The whole group satisfaction can be maximized, finding solutions as close as possible to the ideal consensus. The group moderator is in charge of making the final decision, finding the best compromise between the collective satisfaction and dissatisfaction. Imperfect information on values of objective functions, required and available resources, and decision model parameters are handled by using interval numbers. Two different kinds of multi-criteria decision models are considered: (i) an interval outranking approach and (ii) an interval weighted-sum value function. The proposal is more general than other approaches to group multi-objective optimization since (a) some (even all) objective values may be not the same for different DMs; (b) each group member may consider their own set of objective functions and constraints; (c) objective values may be imprecise or uncertain; (d) imperfect information on resources availability and requirements may be handled; (e) each group member may have their own perception about the availability of resources and the requirement of resources per activity. An important application of the new approach is collective multi-objective project portfolio optimization. This is illustrated by solving a real size group many-objective project portfolio optimization problem using evolutionary computation tools.


2020 ◽  
Vol 40 (4) ◽  
pp. 360-371
Author(s):  
Yanli Cao ◽  
Xiying Fan ◽  
Yonghuan Guo ◽  
Sai Li ◽  
Haiyue Huang

AbstractThe qualities of injection-molded parts are affected by process parameters. Warpage and volume shrinkage are two typical defects. Moreover, insufficient or excessively large clamping force also affects the quality of parts and the cost of the process. An experiment based on the orthogonal design was conducted to minimize the above defects. Moldflow software was used to simulate the injection process of each experiment. The entropy weight was used to determine the weight of each index, the comprehensive evaluation value was calculated, and multi-objective optimization was transformed into single-objective optimization. A regression model was established by the random forest (RF) algorithm. To further illustrate the reliability and accuracy of the model, back-propagation neural network and kriging models were taken as comparative algorithms. The results showed that the error of RF was the smallest and its performance was the best. Finally, genetic algorithm was used to search for the minimum of the regression model established by RF. The optimal parameters were found to improve the quality of plastic parts and reduce the energy consumption. The plastic parts manufactured by the optimal process parameters showed good quality and met the requirements of production.


2016 ◽  
Vol 8 (12) ◽  
pp. 168781401668294 ◽  
Author(s):  
Si Chen ◽  
Zhaohui Wang ◽  
Mi Lv

The mechanical properties of the steering column have a significant influence on the comfort and stability of a vehicle. In order for the mechanical properties to be improved, the rotary swaging process of the steering column is studied in this article. The process parameters, including axial feed rate, hammerhead speed, and hammerhead radial reduction, are systematically analyzed and optimized based on a multi-objective optimization design. The response surface methodology and the genetic algorithm are employed for optimal process parameters to be obtained. The maximum damage value, the maximum forming load, and the equivalent strain difference obtained with the optimal process parameters are, respectively, decreased by 30.09%, 7.44%, and 57.29% compared to the initial results. The comparative results present that the quality of the steering column is improved. The torque experiments and fatigue experiments are conducted with the optimal steering column. The maximum torque is measured to be 260 NM, and the service life is measured to be 2 weeks (40 NM, 2500 times), which are, respectively, increased by 8.3% and 8.69% compared to the initial results. The above results display that the mechanical properties of the steering column are optimized to verify the feasibility of the multi-objective optimization method.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4466
Author(s):  
Maël Riou ◽  
Florian Dupriez-Robin ◽  
Dominique Grondin ◽  
Christophe Le Loup ◽  
Michel Benne ◽  
...  

Microgrids operating on renewable energy resources have potential for powering rural areas located far from existing grid infrastructures. These small power systems typically host a hybrid energy system of diverse architecture and size. An effective integration of renewable energies resources requires careful design. Sizing methodologies often lack the consideration for reliability and this aspect is limited to power adequacy. There exists an inherent trade-off between renewable integration, cost, and reliability. To bridge this gap, a sizing methodology has been developed to perform multi-objective optimization, considering the three design objectives mentioned above. This method is based on the non-dominated sorting genetic algorithm (NSGA-II) that returns the set of optimal solutions under all objectives. This method aims to identify the trade-offs between renewable integration, reliability, and cost allowing to choose the adequate architecture and sizing accordingly. As a case study, we consider an autonomous microgrid, currently being installed in a rural area in Mali. The results show that increasing system reliability can be done at the least cost if carried out in the initial design stage.


2021 ◽  
Author(s):  
Zahoor Ahmed Shariff ◽  
Lokesh M. ◽  
K. Mayandi ◽  
A. K. Saravanan ◽  
P. Sethu Ramalingam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document