Experimental and Theoretical Investigation of Vibro-Impact Motions of a Gear Pair Subjected to Torque Fluctuations to Define a Rattle Noise Severity Index

2021 ◽  
pp. 1-17
Author(s):  
Ata Donmez ◽  
Ahmet Kahraman

Abstract Vibro-impacts are common in various automotive engine and transmission gear applications. They are known to cause excessive noise levels, often called rattling or hammering. Input and output fluctuations acting on such systems cause tooth separations and sequences of impacts allowed by backlash at the gear mesh interfaces. The fluctuations leading gear rattling have often been studied for specific applications with the excitations produced typically by an internal combustion engine. As such, rattle evaluations have been often empirical and specific to the systems considered. In this study, an experimental test set-up of a gear pair is developed to emulate the same torque fluctuations in a laboratory environment. This set-up is used to establish an impact velocity-based rattle severity index defined by the measured torsional behavior of the drive train that is shown to correlate well with the measured sound pressure levels. With that, a validated dynamic model of the experimental setup is employed to predict the same index to allow estimation of rattle noise outcome solely from a torsional dynamic model of the drivetrain. Predicted rattle severity indexes are shown to agree well with the measured ones within wide ranges of torque fluctuations and backlash magnitudes, allowing an assessment of rattle performance of a drivetrain solely from a torsional model.

Author(s):  
Ata Donmez ◽  
Ahmet Kahraman

Abstract Dynamic response of a gear pair subjected to input and output torque or velocity fluctuations is examined analytically. Such motions are commonly observed in various powertrain systems and identified as gear rattle or hammering motions with severe noise and durability consequences. A reduced-order torsional model is proposed along with a computationally efficient piecewise-linear solution methodology to characterize the system response including its sensitivity to excitation parameters. Validity of the proposed model is established through comparisons of its predictions to measurements from a gear rattle experimental set-up. A wide array of nonlinear behavior is demonstrated through presentation of periodic and chaotic responses in the forms of phase plots, Poincaré maps, and bifurcation diagrams. The severity of the resultant impacts on the noise outcome is also assessed through a rattle severity index defined by using the impact velocities.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Wang ◽  
Lei Zhang ◽  
Yuan-Qing Luo ◽  
Chang-Zheng Chen

In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result.


At production of fabrics, including fabrics for agricultural purpose, an important role is played by the cor-rect adjustment of operation of machine main regulator. The quality of setup of machine main controller is determined by the proper selection of rotation angle of warp beam weaving per one filling thread. In the pro-cess of using the regulator as a result of mistakes in adjustment, wear of transmission gear and backlashes in connections of details there are random changes in threads length. The purpose of the article is the research of property of random errors of basis giving by STB machine regulator. Mistakes can be both negative, and positive. In case of emergence only negative or only positive mistakes operation of the machine becomes im-possible as there will be a consecutive accumulation of mistakes. As a result of experimental data processing for stable process of weaving and the invariable diameter of basis threads winding of threads it is revealed that the random error of giving is set up as linear function of the accidental length having normal distribution. Measurements of accidental deviations in giving of a basis by the main regulator allowed to construct a curve of normal distribution of its actual length for one pass of weft thread. The presented curve of distribution of random errors in giving of a basis is the displaced curve of normal distribution of the accidental sizes. Also we define the density of probability of normal distribution of basis giving errors connected with a margin er-ror operation of the main regulator knowing of which allows to plan ways of their decrease that is important for improvement of quality of the produced fabrics.


2021 ◽  
pp. 1-29
Author(s):  
Ahmet Dindar ◽  
Amit Chimanpure ◽  
Ahmet Kahraman

Abstract A tribo-dynamic model of ball bearings is proposed to predict their load-dependent (mechanical) power losses. The model combines (i) a transient, point contact mixed elastohydrodynamic lubrication (EHL) formulation to simulate the mechanics of the load carrying lubricated ball-race interfaces, and (ii) a singularity-free dynamics model, and establishes the two-way coupling between them that dictates power losses. The dynamic model employs a vectoral formulation with Euler parameters. The EHL model is capable of capturing two-dimensional contact kinematics, velocity variations across the contact as well as asperity interactions of rough contact surfaces. Resultant contact surface shear distributions are processed to predict mechanical power losses of example ball bearings operating under combined radial and axial forces. An experimental set-up is introduced for measurement of the power losses of rolling-element bearings. Sets of measurements taken by using the same example ball bearings are compared to those predicted by the model to assess its accuracy in predicting mechanical power loss of a ball bearing within wide ranges of axial and radial forces.


2012 ◽  
Vol 460 ◽  
pp. 160-164 ◽  
Author(s):  
Song He Zhang ◽  
Yue Gang Luo ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the three-span rotor-bearing system with rub-impact fault was set up. The influence to nonlinear dynamics behaviors of the rotor-bearing system that induced by rub-impact of one disc, two discs and three discs were numerically studied. The main influence of the rotor system response by the rub-impact faults are in the supercritical rotate speed. There are mutations of amplitudes in the responses of second and third spans in supercritical rotate speed when rub-impact with one disc, and there are chaotic windows in the response of first span, and jumping changes in second and third spans when rub-impact with two or three discs.


2019 ◽  
Vol 13 (2) ◽  
pp. 154-161
Author(s):  
Ivan Sabo ◽  
Milan Kljain ◽  
Mirko Karakašić ◽  
Željko Ivandić

In this paper, the design and calculation of planetary transmission with bevel gears for road vehicles is presented. It must transfer power to the wheels with the possibility that wheels can rotate at different speeds. The basic calculation of transmission is performed for the drive machine, where an internal combustion engine is chosen, and for the driven machine, which is a car, all forces of resistance are calculated so that the transmission needs to be overcome to move the car. Based on the standard ISO 23509:2016 norm, the calculation of geometry is performed for the input gear pair and it is defined as a hypoid gear pair. For the planetary transmission, a calculation of gear module for bevel gears is first performed, and after that, the geometry is calculated. The calculation of the stress for root stress and Hertz contact pressure is performed for all bevel gears in transmission.


2016 ◽  
Vol 817 ◽  
pp. 41-46
Author(s):  
Grzegorz Peruń

The increase of transverse contact ratio (εα) value usually allows reducing general level of gear vibroactivity. Article put to the test influence of coefficient εα value on dynamic forces in mesh zone with use of dynamic model of toothed gear. From theoretical point of view, the optimum value of transverse contact ratio is equal 2, what mean, that in mesh are always two pair of teeth. Obtainment such value of coefficient εα requires another construction of toothed wheels – wheels with HCR (High Contact Ratio) profile teeth. On result of occurrence of different deviations in toothed gears, as well as the dynamic phenomena, obtainment of continuous two-pair cooperation of gear pair is impossible and when this necessary is, solutions with near or exceed optimum value of coefficient are applied.


1986 ◽  
Vol 108 (3) ◽  
pp. 348-353 ◽  
Author(s):  
R. August ◽  
R. Kasuba

An interative method has been developed for analyzing dynamic loads in a light weight basic planetary gear system. The effects of fixed, semi-floating, and fully-floating sun gear conditions have been emphasized. The load dependent variable gear mesh stiffnesses were incorporated into a practical torsional dynamic model of a planetary gear system. The dynamic model consists of input and output units, shafts, and a planetary train. In this model, the sun gear has three degrees of freedom; two transverse and one rotational. The planets, ring gear, and the input and output units have one degree of freedom, (rotation) thus giving a total of nine degrees of freedoms for the basic system. The ring gear has a continuous radial support. The results indicate that the fixed sun gear arrangement with accurate or errorless gearing offers in general better performance than the floating sun gear system.


Lubricants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Florian Summer ◽  
Florian Grün ◽  
Emma R Ravenhill

Increasing environmental legislation and demands for improved fuel economy performance have resulted in the introduction of various measures to optimize the internal combustion engine. Many of these actions significantly change the operating conditions of the engines and bring with them new challenges that original engine manufacturers (OEMs) have to solve. One example is stop start technology, which changes the operation of many core parts of engines such as journal bearings. Hence, the current paper deals with this topic. In particular, different polymer coated bearings have been studied regarding their friction and wear performance under stop start sliding. Detailed material characterization of the materials was carried out using light microscopy and scanning electron microscopy. Furthermore, tribometric tests were conducted under controlled and similar conditions on a TE92 tribometer using a bearing segment test set up. The results show that the various polymer coated bearings tested provide enhanced friction and wear performance in comparison to other bearing types (e.g., lead-based electroplated) and that friction and wear performance differs also among them. In this regard, a higher amount of solid lubricant fillers and a dense filler structure appears to be beneficial under the given test conditions.


Sign in / Sign up

Export Citation Format

Share Document