Exact Solutions for Longitudinal Vibration of Multi-Step Bars with Varying Cross-Section

1999 ◽  
Vol 122 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Q. S. Li

Using appropriate transformations, the equation of motion for free longitudinal vibration of a nonuniform one-step bar is reduced to an analytically solvable equation by selecting suitable expressions, such as power functions and exponential functions, for the area variation. Exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a one step nonuniform bar are derived and used to obtain the frequency equation of multi-step bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. A numerical example demonstrates that the calculated natural frequencies and mode shapes of a television transmission tower are in good agreement with the corresponding experimental data, and the selected expressions are suitable for describing the area variation of typical high-rise structures. [S0739-3717(00)00302-0]

Author(s):  
Alok Sinha

Abstract The wave equation governing longitudinal vibration of a bar and torsional vibration of a circular shaft, and the Euler-Bernoulli equation governing transverse vibration of a beam were developed in the eighteenth century. Natural frequencies and mode shapes are easily obtained for uniform or constant spatial parameters (cross sectional area, material property and mass distribution). But, real engineering structures seldom have constant parameters. For non-uniform continuous structure, a large number of papers have been written for more than 100 years since the publication of Kirchhoff’s memoir in 1882. There are analytical solutions only in few cases, and there are approximate numerical methods to deal with other (almost all) cases, most notably Stodola, Holzer and Myklestad methods in addition to Rayleigh-Ritz and finite element methods. This paper presents a novel approach to compute natural frequencies and mode shapes for arbitrary variations of spatial parameters on the basis of linear time-varying system theory. The advantage of this approach is that now it can be claimed that “almost” closed-form solutions are available to find natural frequencies and mode shapes of any non-uniform, linear and one-dimensional continuous structure.


Author(s):  
Shyh-Chin Huang ◽  
Chen-Kai Su

Abstract The frequencies and mode shapes of rolling rings with radial and circumferential displacement constraints are investigated. The displacement constraints practically come from the point contact, e.g., rolling tire on the road, or other applications. The proposed approach to analysis is calculating the natural frequencies and modes of a non-contacted spinning ring, then employing the receptance method for displacement constraints. The frequency equation for the constrained system is hence obtained, and it can be solved numerically or graphically. The receptance matrix developed for the spinning ring is surprisingly found not symmetric as usual. Moreover, the cross receptances are discovered to form complex conjugate pairs. That is a feature that has never been described in literature. The results show that the natural frequencies for the spinning ring in contact, as expected, higher than those for the non-contacted ring. The variance of frequencies to rotational speeds are then illustrated. The analytic forms of mode shapes are also derived and sketched. The traveling modes are then shown for cases.


1999 ◽  
Author(s):  
S. Park ◽  
J. W. Lee ◽  
Y. Youm ◽  
W. K. Chung

Abstract In this paper, the mathematical model of a Bernoulli-Euler cantilever beam fixed on a moving cart and carrying an intermediate lumped mass is derived. The equations of motion of the beam-mass-cart system is analyzed utilizing unconstrained modal analysis, and a unified frequency equation which can be generally applied to this kind of system is obtained. The change of natural frequencies and mode shapes with respect to the change of the mass ratios of the beam, the lumped mass and the cart and to the position of the lumped mass is investigated. The open-loop responses of the system by arbitrary forcing function are also obtained through numerical simulations.


1994 ◽  
Vol 61 (4) ◽  
pp. 964-970 ◽  
Author(s):  
K. T. Chau

This paper investigates the exact frequency equations for all the possible natural vibrations in a transversely isotropic cylinder of finite length. Two wave potentials are used to uncouple the equations of motion; the resulting hyperbolic equations are solved analytically for the vibration frequencies of a finite cylinder with zero shear tractions and zero axial displacement on the end surfaces and with zero tractions on the curved surfaces. In general, the mode shapes and the frequency equations of vibrations depend on both the range of the frequency and the elastic properties of the material. The vibration frequencies for sapphire cylinders are studied as an example. Two limiting cases are also considered: the long bar limit equals the frequency equation for the longitudinal vibration of bars obtained by Morse (1954) and by Lord Rayleigh (1945); and the frequency equation for thin disks (small length/radius ratio) is also obtained. The frequency for the first axisymmetric mode agrees with the experimental observation by Lusher and Hardy (1988) to within one percent. Natural frequencies for the first three longitudinal and circumferential modes are plotted for all cylinder geometries. The lowest frequency always corresponds to the first nonsymmetric mode regardless of the dimension of the cylinder. For axisymmetric vibration modes, numerical plots show that double roots exist in the frequency equations; such doublets were observed experimentally by Booker and Sagar (1971).


1988 ◽  
Vol 110 (1) ◽  
pp. 2-8 ◽  
Author(s):  
Y. C. Kim

Natural frequencies, mode shapes and critical buckling loads of marine risers simply supported at both ends are given in closed form by using the WKB method. These solutions allow variable cross section, bending rigidity, tension and mass distribution along the riser length. Furthermore, a simple procedure to predict natural frequencies for other boundary conditions is described. Some special forms of these closed-form solutions are compared with existing solutions in the literature.


2019 ◽  
Vol 457 ◽  
pp. 118-138 ◽  
Author(s):  
Goranka Štimac Rončević ◽  
Branimir Rončević ◽  
Ante Skoblar ◽  
Roberto Žigulić

2000 ◽  
Author(s):  
Hamid R. Hamidzadeh

Abstract An analytical method is presented to consider the vibration characteristics of high speed rotating rings. More specifically, a systematic approach based on an established solution for linear in-plane vibration of spinning annular disks is used to compute natural frequencies and mode shapes of rotating rings. The medium is considered to be homogenous, and elastic isotropic. The developed analytical solution is achieved by implementing the two-dimensional plane stress theory. The modal displacements and stresses at both inner and outer boundaries are determined, and the required boundary conditions are satisfied to obtain the frequency equation. The dimensionless natural frequencies for different modes, rotating speeds, and thickness ratios are computed. In addition, variations of dimensionless critical speeds for several circumferential wave numbers versus radius ratio of the ring are presented. The provided results are for the two different cases of clamped-free and free-free rings.


2007 ◽  
Vol 334-335 ◽  
pp. 85-88
Author(s):  
Daisuke Narita ◽  
Yoshihiro Narita

Despite a large number of technical papers on vibration of composite shallow shells, all the previous papers have dealt with shallow shells with uniform curvature to avoid difficulty in the analysis. Recent composite products, however, require various surface designs of thin panels from the viewpoint of industrial design, for example, in the fender and door panel designs of commercial vehicles. The present study proposes an analytical method to deal with vibration of shallow shells with non-uniform curvature. An interpolating function is introduced to represent the required surface shape and the corresponding curvature is derived as a function of the position (x,y). The obtained curvature is substituted into the total potential energy of the shell, and the procedure is shown to derive a frequency equation in the Ritz method. Numerical examples clarifies the effects of non- uniform curvature on the natural frequencies and mode shapes.


1997 ◽  
Vol 64 (4) ◽  
pp. 957-964 ◽  
Author(s):  
P. Yu

This paper is concerned with the dynamical analysis of a sagged cable having small equilibrium curvature and horizontal supports under both distributed and concentrated loads. The loads are applied in vertical as well as horizontal directions. Based on a free vibration analysis, a transfer matrix method is generalized for solving coupled, nonhomogeneous differential equations to obtain closed-form solutions for the natural frequencies and the associated vibration mode shapes in vertical, horizontal, and longitudinal directions. It is shown that two sets of independent mode shapes associated with two sets of independent frequencies always exist and can be obtained via an equation of one variable only. This method demonstrates its advantages in dealing with interactions of modes in different directions, complex arrangement of concentrated loads, and high-order modes oscillations.


2021 ◽  
Vol 8 (1) ◽  
pp. 307-318
Author(s):  
Giuseppe Nitti ◽  
Giuseppe Lacidogna ◽  
Alberto Carpinteri

Abstract In this paper, an original analytical formulation to evaluate the natural frequencies and mode shapes of high-rise buildings is proposed. The methodology is intended to be used by engineers in the preliminary design phases as it allows the evaluation of the dynamic response of high-rise buildings consisting of thin-walled closed- or open-section shear walls, frames, framed tubes, and dia-grid systems. If thin-walled open-section shear walls are present, the stiffness matrix of the element is evaluated considering Vlasov’s theory. Using the procedure called General Algorithm, which allows to assemble the stiffness matrices of the individual vertical bracing elements, it is possible to model the structure as a single equivalent cantilever beam. Furthermore, the degrees of freedom of the structural system are reduced to only three per floor: two translations in the x and y directions and a rigid rotation of the floor around the vertical axis of the building. This results in a drastic reduction in calculation times compared to those necessary to carry out the same analysis using commercial software that implements Finite Element models. The potential of the proposed method is confirmed by a numerical example, which demonstrates the benefits of this procedure.


Sign in / Sign up

Export Citation Format

Share Document