Use of Scale-Model Aids in Solution of Complex Air-Flow Design Problem

Author(s):  
Arthur Oppenheim ◽  
Frederic M. Oran

This paper describes a method used to design the inlet section of a jet-engine test cell. Calculations, accomplished with the use of standard, tabulated flow formulas and coefficients which can be found in basic fluid-flow texts, are shown. The step-by-step procedure enables the reader to use the methods and formulas in this paper as a guide for solving similar problems. Selection of an optimum turning-vane configuration is described herein by the use of tufts of cotton in the air stream of the model. A table is included which compares the model data with actual full-scale construction at various stages.

Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 888-901 ◽  
Author(s):  
R. Gerhard Pratt

Seismic waveforms contain much information that is ignored under standard processing schemes; seismic waveform inversion seeks to use the full information content of the recorded wavefield. In this paper I present, apply, and evaluate a frequency‐space domain approach to waveform inversion. The method is a local descent algorithm that proceeds from a starting model to refine the model in order to reduce the waveform misfit between observed and model data. The model data are computed using a full‐wave equation, viscoacoustic, frequency‐domain, finite‐difference method. Ray asymptotics are avoided, and higher‐order effects such as diffractions and multiple scattering are accounted for automatically. The theory of frequency‐domain waveform/wavefield inversion can be expressed compactly using a matrix formalism that uses finite‐difference/finite‐element frequency‐domain modeling equations. Expressions for fast, local descent inversion using back‐propagation techniques then follow naturally. Implementation of these methods depends on efficient frequency‐domain forward‐modeling solutions; these are provided by recent developments in numerical forward modeling. The inversion approach resembles prestack, reverse‐time migration but differs in that the problem is formulated in terms of velocity (not reflectivity), and the method is fully iterative. I illustrate the practical application of the frequency‐domain waveform inversion approach using tomographic seismic data from a physical scale model. This allows a full evaluation and verification of the method; results with field data are presented in an accompanying paper. Several critical processes contribute to the success of the method: the estimation of a source signature, the matching of amplitudes between real and synthetic data, the selection of a time window, and the selection of suitable sequence of frequencies in the inversion. An initial model for the inversion of the scale model data is provided using standard traveltime tomographic methods, which provide a robust but low‐resolution image. Twenty‐five iterations of wavefield inversion are applied, using five discrete frequencies at each iteration, moving from low to high frequencies. The final results exhibit the features of the true model at subwavelength scale and account for many of the details of the observed arrivals in the data.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yue Sun ◽  
Yanze Yu ◽  
Jinhao Guo ◽  
Minghai Zhang

Single-scale frameworks are often used to analyze the habitat selections of species. Research on habitat selection can be significantly improved using multi-scale models that enable greater in-depth analyses of the scale dependence between species and specific environmental factors. In this study, the winter habitat selection of red deer in the Gogostaihanwula Nature Reserve, Inner Mongolia, was studied using a multi-scale model. Each selected covariate was included in multi-scale models at their “characteristic scale”, and we used an all subsets approach and model selection framework to assess habitat selection. The results showed that: (1) Univariate logistic regression analysis showed that the response scale of red deer to environmental factors was different among different covariate. The optimal scale of the single covariate was 800–3200 m, slope (SLP), altitude (ELE), and ratio of deciduous broad-leaved forests were 800 m in large scale, except that the farmland ratio was 200 m in fine scale. The optimal scale of road density and grassland ratio is both 1600 m, and the optimal scale of net forest production capacity is 3200 m; (2) distance to forest edges, distance to cement roads, distance to villages, altitude, distance to all road, and slope of the region were the most important factors affecting winter habitat selection. The outcomes of this study indicate that future studies on the effectiveness of habitat selections will benefit from multi-scale models. In addition to increasing interpretive and predictive capabilities, multi-scale habitat selection models enhance our understanding of how species respond to their environments and contribute to the formulation of effective conservation and management strategies for ungulata.


2021 ◽  
Vol 1 ◽  
pp. 2047-2056
Author(s):  
Michael P. Voigt ◽  
Dominik Klaiber ◽  
Patrick Hommel ◽  
Daniel Roth ◽  
Hansgeorg Binz ◽  
...  

AbstractThe approach of functional integration has the potential to solve challenges regarding lightweight design and resource efficiency since the number of parts and therefore the weight and needed installation space can be reduced. One important step in developing integrative concepts is the pre-selection of suitable functions or components. Previous methods of pre-selection take various aspects into account. However, pre-selection based on these methods usually requires additional tables and forms, whose preparation and editing quickly becomes time-consuming. At the same time, most of the development engineers are working on CAD models. However, their use in the selection of suitable integration partners is not yet supported sufficiently. The development of more than 80 concepts on five different vehicles has shown that the consideration of geometric properties (position, orientation, size) is effective, as they can be identified with minimal analysis effort while working on CAD. In this paper a four-step procedure is presented how integration partners can be identified directly on the basis of CAD models. A following evaluation with development engineers in practice completes the research.


2017 ◽  
Vol 14 (14) ◽  
pp. 3487-3508 ◽  
Author(s):  
Tobias Houska ◽  
David Kraus ◽  
Ralf Kiese ◽  
Lutz Breuer

Abstract. This study presents the results of a combined measurement and modelling strategy to analyse N2O and CO2 emissions from adjacent arable land, forest and grassland sites in Hesse, Germany. The measured emissions reveal seasonal patterns and management effects, including fertilizer application, tillage, harvest and grazing. The measured annual N2O fluxes are 4.5, 0.4 and 0.1 kg N ha−1 a−1, and the CO2 fluxes are 20.0, 12.2 and 3.0 t C ha−1 a−1 for the arable land, grassland and forest sites, respectively. An innovative model–data fusion concept based on a multicriteria evaluation (soil moisture at different depths, yield, CO2 and N2O emissions) is used to rigorously test the LandscapeDNDC biogeochemical model. The model is run in a Latin-hypercube-based uncertainty analysis framework to constrain model parameter uncertainty and derive behavioural model runs. The results indicate that the model is generally capable of predicting trace gas emissions, as evaluated with RMSE as the objective function. The model shows a reasonable performance in simulating the ecosystem C and N balances. The model–data fusion concept helps to detect remaining model errors, such as missing (e.g. freeze–thaw cycling) or incomplete model processes (e.g. respiration rates after harvest). This concept further elucidates the identification of missing model input sources (e.g. the uptake of N through shallow groundwater on grassland during the vegetation period) and uncertainty in the measured validation data (e.g. forest N2O emissions in winter months). Guidance is provided to improve the model structure and field measurements to further advance landscape-scale model predictions.


Author(s):  
Adam Kozakiewicz ◽  
Stanislaw Jóźwiak ◽  
Przemysław Jóźwiak ◽  
Stanisław Kachel

The structural and strength analysis of the material used to construct such an important engine element as the turbine is of great significance, both at the design stage as well as during tests and expertises related to emergency situations. Bearing in mind the conditions above mentioned, the paper presents the results of research on the chemical composition, morphology and phased structure of the metallic construction material used to produce the blades of the high and low pressure turbine of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. The data obtained as a result of the material tests of the blades allowed, on the basis of the analysis of chemical composition and phased structure, to determine the grade of the alloy used to construct the tested elements of the jet engine turbine. The structural stability of the material was found to be lower in comparison with engine operating conditions, which manifested itself as a clear decrease in the resistance properties of the blade material. The results obtained can be used as a basis for analyzing the life span of an object or a selection of material replacements, which enable to produce the analyzed engine element.


2021 ◽  
Vol 2 (1) ◽  
pp. 01-21
Author(s):  
Pius ten Hacken

This paper addresses the question of the definition of compounding from a terminological perspective. In terminology, concepts are defined by a selection of properties shared by prototypical cases. For scientific terminology, the selection is validated by the strength of the theories that can use the definition. It is shown that morphophonological criteria often adduced in the delimitation of compounding are not adequate in a universal definition. In order to come up with a better definition, a two-step procedure is proposed. In the first step, a universal definition is used to determine for constructions in a particular language whether they belong to compounding. In the second step, language-specific properties are used to identify instances of these constructions. A definition is proposed that takes a compound as a word with a binary, headed structure, a relation between the elements that is not determined by compounding and a non-head that is not introduced as an entity in the discourse. The use of this definition is illustrated with a number of constructions in different languages. It is shown that expressions commonly called exocentric and copulative compounds are generally not compounds in this definition, but that some expressions that have been labelled as such are in fact compounds. The two-step procedure demonstrated here for compounding can also be used for other linguistic terms.


Sign in / Sign up

Export Citation Format

Share Document