scholarly journals A Combined System of Fuel Washing Involving Both Centrifuges and Electrostatic Separators: A Hybrid

1978 ◽  
Author(s):  
E. G. Spalding ◽  
G. E. Krulls

In the gas turbine business, heavy fuels have traditionally been treated by plants using either centrifuges or electrostatic precipitators as water/fuel separators. These systems individually have certain disadvantages when applied to treating difficult heavy fuels, which can be overcome by combining the two systems whereby in the first-stage centrifuges are used followed by electrostatic precipitators in the second and subsequent stages of the treatment. The first part of the paper will deal with the Hybrid system itself, outlining its advantages, to be followed by a second part which will provide a description of the world’s first Hybrid plant which will have been built for Qatar. This plant has two stages, the first with seven centrifuges and the second with an electrostatic precipitator. Extraction of the salt in the oil to the wash water is brought about in both stages by a multi-stage rotary paddle type extractor which will also be described.

Author(s):  
Mohamed Gadalla ◽  
Nabil Al Aid

In this study, a complete economic analysis of integrating different types of fuel cells in Gas Turbine power plants is conducted. The paper investigates the performance of a hybrid system that comprises of a SOFC (Solid-Oxide-Fuel-Cell), a PEMFC (polymer electrolyte membrane fuel Cell), and SOFC-PEMFC which is/are integrated into a Gas Turbine power plant. Detailed modeling, thermodynamic, kinetic, geometric models are developed, implemented and validated for the synthesis/design and operational analysis of the combined hybrid system. The economic analysis is considered to be the basic concepts for thermo-economic optimization of the power plant under investigation, with the aim of finding the optimum set of design/operating parameters. Moreover, one of the aims of this paper is to present a detailed economic analysis of a highly coupled PEMFC-SOFC–GT hybrid plant, paying special attention to the sources of inefficiency and analyzing their variations with respect to changes in their operational parameters.


Author(s):  
Kousuke Nishida ◽  
Toshimi Takagi ◽  
Shinichi Kinoshita ◽  
Tadashi Tsuji

Solid oxide fuel cell (SOFC) and gas turbine hybrid power generation systems have gained more and more attention with regard to the development of the high performance distributed energy systems. The SOFC can be combined with a gas turbine because the SOFC operating temperature of about 1000°C matches the turbine inlet temperature. In this study, we proposed the multi-stage type SOFC/GT combined system and compared the system performance of it with that of other combined systems using the thermal efficiency and exergy evaluation. It is noted that the thermal efficiency of the 3-stage type SOFC/GT combined system can reach more than 70% (HHV) at low pressure ratio.


2014 ◽  
Vol 13 (2) ◽  
pp. 113-123 ◽  
Author(s):  
Hak-Song Jeon ◽  
◽  
Jong-Min Kim ◽  
Kwang-Han Bae ◽  
Tae-Oh Kim

Author(s):  
Juan Luis Pérez-Ruiz ◽  
Igor Loboda ◽  
Iván González-Castillo ◽  
Víctor Manuel Pineda-Molina ◽  
Karen Anaid Rendón-Cortés ◽  
...  

The present paper compares the fault recognition capabilities of two gas turbine diagnostic approaches: data-driven and physics-based (a.k.a. gas path analysis, GPA). The comparison takes into consideration two differences between the approaches, the type of diagnostic space and diagnostic decision rule. To that end, two stages are proposed. In the first one, a data-driven approach with an artificial neural network (ANN) that recognizes faults in the space of measurement deviations is compared with a hybrid GPA approach that employs the same type of ANN to recognize faults in the space of estimated fault parameter. Different case studies for both anomaly detection and fault identification are proposed to evaluate the diagnostic spaces. They are formed by varying the classification, type of diagnostic analysis, and deviation noise scheme. In the second stage, the original GPA is reconstructed replacing the ANN with a tolerance-based rule to make diagnostic decisions. Here, two aspects are under analysis: the comparison of GPA classification rules and whole approaches. The results reveal that for simple classifications both spaces are equally accurate for anomaly detection and fault identification. However, for complex scenarios, the data-driven approach provides on average slightly better results for fault identification. The use of a hybrid GPA with ANN for a full classification instead of an original GPA with tolerance-based rule causes an increase of 12.49% in recognition accuracy for fault identification and up to 54.39% for anomaly detection. As for the whole approach comparison, the application of a data-driven approach instead of the original GPA can lead to an improvement of 12.14% and 53.26% in recognition accuracy for fault identification and anomaly detection, respectively.


Author(s):  
Mohamed A. Altaher ◽  
Hu Li ◽  
Simon Blakey ◽  
Winson Chung

This paper investigated the emissions of individual unburned hydrocarbons and carbonyl compounds from the exhaust gas of an APU (Auxiliary Power Unit) gas turbine engine burning various fuels. The engine was a single spool, two stages of turbines and one stage of centrifugal compressor gas turbine engine, and operated at idle and full power respectively. Four alternative aviation fuel blends with Jet A-1 were tested including GTL, hydrogenated renewable jet fuel and fatty acid ester. C2-C4 alkenes, benzene, toluene, xylene, trimethylbenzene, naphthalene, formaldehyde, acetaldehyde and acrolein emissions were measured. The results show at the full power condition, the concentrations for all hydrocarbons were very low (near or below the instrument detection limits). Formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions. Formaldehydes emissions were reduced for all fuels compared to Jet A-1 especially at the idle conditions. There were no differences in acetaldehydes and acrolein emissions for all fuels; however, there was a noticeable reduction with GTL fuel. The aromatic hydrocarbon emissions including benzene and toluene are decreased for the alternative and renewable fuels.


Author(s):  
Ji Ho Ahn ◽  
Tong Seop Kim

Owing to the increasing consumption of fossil fuels and emission of greenhouse gases, interests in highly efficient and low carbon emitting power systems are growing fast. Several research groups have been suggesting advanced systems based on fuel cells and have also been applying carbon capture and storage technology to satisfy the demand for clean energy. In this study, the performance of a hybrid system, which is a combination of a molten carbonate fuel cell (MCFC) with oxy-combustion carbon capture and an indirectly fired micro gas turbine (MGT) was predicted. A 2.5MW MCFC system that is used in commercial applications was used as the reference system so that the results of the study could be applicable to practical situations. The ambient pressure type hybrid system was modeled by referring to the design parameters of an MGT that is currently being developed. A semi-closed type design characterized by flow recirculation was adopted for this hybrid system. A part of the recirculating gas is converted into liquefied carbon dioxide and captured for storage at the carbon separation unit. Almost 100% carbon dioxide capture is possible with this system. In these systems, the output power of the fuel cell is larger than in the normal hybrid system without carbon capture because the partial pressure of carbon dioxide increases. The increased cell power partially compensates for the power loss due to the carbon capture and MGT power reduction. The dependence of net system efficiency of the oxy-hybrid on compressor pressure ratio is marginal, especially beyond an optimal value.


2017 ◽  
Vol 89 (3) ◽  
pp. 444-456
Author(s):  
Lei Chen ◽  
Jiang Chen

Purpose This paper aims to conduct the optimization of the multi-stage gas turbine with the effect of the cooling air injection based on the adjoint method. Design/methodology/approach Continuous adjoint method is combined with the S2 surface code. Findings The optimization of the stagger angles, stacking lines and the passage can improve the attack angles and restrain the development of the boundary, reducing the secondary flow loss caused by the cooling air injection. Practical implications The aerodynamic performance of the gas turbine can be improved via the optimization of blade and passage based on the adjoint method. Originality/value The results of the first study on the adjoint method applied to the S2 surface through flow calculation including the cooling air effect are presented.


2014 ◽  
Vol 257 ◽  
pp. 412-420 ◽  
Author(s):  
Dustin McLarty ◽  
Jack Brouwer ◽  
Scott Samuelsen

Sign in / Sign up

Export Citation Format

Share Document