scholarly journals System Status of the Water-Cooled Gas Turbine for the High Temperature Turbine Technology Program

1979 ◽  
Author(s):  
A. Caruvana ◽  
W. H. Day ◽  
G. A. Cincotta ◽  
R. S. Rose

This paper presents an update on the status of the technology of the water-cooled gas turbine developed by the General Electric Company under contracts with EPRI, ERDA, and DOE. Particular emphasis is devoted to the design and development of water-cooled composite turbine nozzles and buckets, and a sectoral combustor designed for low-Btu coal-derived gas operation. The operating characteristics of a low-temperature coal gas chemical cleanup system which is to be added to the coal gasification facility are also discussed. Status of the materials and process developments in support of the designs are also presented, as are updates to the Phase I HTTT Program combined-cycle studies, which evaluate the commercial viability of integrated coal gasification and combined-cycle operation.

Author(s):  
F. Yoshiba ◽  
E. Koda

The efficiency of an integrated coal gasification system equipped with a molten carbonate fuel cell, a gas turbine and a steam turbine (IG/MCFC) is calculated. Coal is conveyed to a gasifier furnace by CO2 and changed to coal gas by adding oxygen; a methyldiethanolamine (MDEA) method is applied to initiate a cleanup procedure of the coal gas. A water-gas shift converter is employed to heat up the coal gas. The cathode gas of the MCFC is composed of CO2 and O2 with a composition of 66.7/33.3 (noble cathode gas composition). The magnitude of the system’s electrical power output is assumed to be that of a 300 MW class. The calculated net efficiency of the 2.2 MPa pressurised system reached a 60.1% high heating value (HHV) without CO2 recovery. The 2.2 MPa pressurised system, however, has a short lifetime limited by the shortening of electrodes. For this reason, a further 0.15 MPa pressurised system (low pressurised system) efficiency is recorded which has a more promising shortening time of the electrodes. The net efficiency of the low pressurised system is 51.9% HHV without CO2recovery. Since the coal is gasified using oxygen and the cathode gas of the MCFC is composed of CO2/O2, the system’s exhaust gas only includes CO2, thus the system is ready for the recovery and storage of carbon dioxide (Carbon Capture and Storage ready, CCS ready). For the purpose of estimating the net efficiency with CO2 recovery, a liquid form of CO2 with a pressure of 10MPa is assumed. Using the 2.2 MPa pressurised system, the net efficiency including the consumption of CO2 compression and liquefaction is evaluated at 58.2% HHV. Another simple CO2 closed system configuration without gas turbine is proposed; the net efficiencies of the 2.2 MPa and the 0.15 MPa system including the consumption of CO2 liquefaction are determined at 56.4% and 50.3% HHV, respectively. According to the calculation results, a high efficiency system with CO2 recovery is possible by applying the noble cathode gas in the IG/MCFC systems.


2015 ◽  
Vol 3 (1) ◽  
pp. 178
Author(s):  
Mohsen Darabi ◽  
Mohammad Mohammadiun ◽  
Hamid Mohammadiun ◽  
Saeed Mortazavi ◽  
Mostafa Montazeri

<p>Electricity is an indispensable amenity in present society. Among all those energy resources, coal is readily available all over the world and has risen only moderately in price compared with other fuel sources. As a result, coal-fired power plant remains to be a fundamental element of the world's energy supply. IGCC, abbreviation of Integrated Gasification Combined Cycle, is one of the primary designs for the power-generation market from coal-gasification. This work presents a in the proposed process, diluted hydrogen is combusted in a gas turbine. Heat integration is central to the design. Thus far, the SGR process and the HGD unit are not commercially available. To establish a benchmark. Some thermodynamic inefficiencies were found to shift from the gas turbine to the steam cycle and redox system, while the net efficiency remained almost the same. A process simulation was undertaken, using Aspen Plus and the engineering equation solver (EES).The The model has been developed using Aspen Hysys® and Aspen Plus®. Parts of it have been developed in Matlab, which is mainly used for artificial neural network (ANN) training and parameters estimation. Predicted results of clean gas composition and generated power present a good agreement with industrial data. This study is aimed at obtaining a support tool for optimal solutions assessment of different gasification plant configurations, under different input data sets.</p>


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1187-1197 ◽  
Author(s):  
Marek Jaszczur ◽  
Michal Dudek ◽  
Zygmunt Kolenda

One of the most advanced and most effective technology for electricity generation nowadays based on a gas turbine combined cycle. This technology uses natural gas, synthesis gas from the coal gasification or crude oil processing products as the energy carriers but at the same time, gas turbine combined cycle emits SO2, NOx, and CO2 to the environment. In this paper, a thermodynamic analysis of environmentally friendly, high temperature gas nuclear reactor system coupled with gas turbine combined cycle technology has been investigated. The analysed system is one of the most advanced concepts and allows us to produce electricity with the higher thermal efficiency than could be offered by any currently existing nuclear power plant technology. The results show that it is possible to achieve thermal efficiency higher than 50% what is not only more than could be produced by any modern nuclear plant but it is also more than could be offered by traditional (coal or lignite) power plant.


Author(s):  
M. Huth ◽  
A. Heilos ◽  
G. Gaio ◽  
J. Karg

The Integrated Gasification Combined Cycle concept is an emerging technology that enables an efficient and clean use of coal as well as residuals in power generation. After several years of development and demonstration operation, now the technology has reached the status for commercial operation. SIEMENS is engaged in 3 IGCC plants in Europe which are currently in operation. Each of these plants has specific characteristics leading to a wide range of experiences in development and operation of IGCC gas turbines fired with low to medium LHV syngases. The worlds first IGCC plant of commercial size at Buggenum/Netherlands (Demkolec) has already demonstrated that IGCC is a very efficient power generation technology for a great variety of coals and with a great potential for future commercial market penetration. The end of the demonstration period of the Buggenum IGCC plant and the start of its commercial operation has been dated on January 1, 1998. After optimisations during the demonstration period the gas turbine is running with good performance and high availability and has exceeded 18000 hours of operation on coal gas. The air-side fully integrated Buggenum plant, equipped with a Siemens V94.2 gas turbine, has been the first field test for the Siemens syngas combustion concept, which enables operation with very low NOx emission levels between 120–600 g/MWh NOx corresponding to 6–30 ppm(v) (15%O2) and less than 5 ppm(v) CO at baseload. During early commissioning the syngas nozzle has been recognised as the most important part with strong impact on combustion behaviour. Consequently the burner design has been adjusted to enable quick and easy changes of the important syngas nozzle. This design feature enables fast and efficient optimisations of the combustion performance and the possibility for easy adjustments to different syngases with a large variation in composition and LHV. During several test runs the gas turbine proved the required degree of flexibility and the capability to handle transient operation conditions during emergency cases. The fully air-side integrated IGCC plant at Puertollano/Spain (Elcogas), using the advanced Siemens V94.3 gas turbine (enhanced efficiency), is now running successfully on coal gas. The coal gas composition at this plant is similar to the Buggenum example. The emission performance is comparable to Buggenum with its very low emission levels. Currently the gas turbine is running for the requirements of final optimization runs of the gasifier unit. The third IGCC plant (ISAB) equipped with Siemens gas turbine technology is located at Priolo near Siracusa at Sicilly/Italy. Two Siemens V94.2K (modified compressor) gas turbines are part of this “air side non-integrated” IGCC plant. The feedstock of the gasification process is a refinery residue (asphalt). The LHV is almost twice compared to the Buggenum or Puertollano case. For operation with this gas, the coal gas burner design was adjusted and extensively tested. IGCC operation without air extraction has been made possible by modifying the compressor, giving enhanced surge margins. Commissioning on syngas for the first of the two gas turbines started in mid of August 1999 and was almost finished at the end of August 1999. The second machine followed at the end of October 1999. Since this both machines are released for operation on syngas up to baseload.


Author(s):  
James C. Corman ◽  
Douglas M. Todd

The integrated gasification combined cycle (IGCC) concept is gaining acceptance as the Clean Coal technology with the best potential for continued improvement in performance and continued reduction in capital cost. In large part this potential will be realized by optimizing the integration of power generation and fuel conversion subsystems and by exploiting advances in gas turbine technology. This paper discusses the impact that technology advances in the gas turbine combined cycle are having on the commercial viability of the IGCC concept. Technical innovations in such areas as coal gas combustion, plant control, and system integration will ensure that IGCC technology will continue to advance well into the future.


Author(s):  
Bent Hansen ◽  
Sloth Larsen ◽  
John W. Tenhundfeld

For more than twenty years the Royal Danish Navy (RDN) has been using gas turbine engines for propulsion of fast patrol vessels as well as frigates. This paper, which is the result of a joint effort by the Royal Danish Navy, Aalborg Vaerft Shipyard, and General Electric Company USA, describes how the propulsion system design was developed using previous RDN gas turbine system experience. A detailed description of the ship, the selection of machinery, and design of the propulsion configuration, including the LM2500 gas turbine module, is included. The three Royal Danish “KV-72” corvettes of the NIELS JUEL class have now been in operation for almost three years. Since the start-up of the NIELS JUEL machinery in November 1978 the CODOG propulsion plants aboard this class have accumulated more than 8,000 running hours, of which over 1,500 hours have been in the gas turbine or “sprint” drive mode. Operational experience with the GE LM2500 gas turbines is also described.


1998 ◽  
Vol 120 (3) ◽  
pp. 481-487 ◽  
Author(s):  
T. Hasegawa ◽  
M. Sato ◽  
T. Ninomiya

Developing integrated coal gasification combined cycle (IGCC) systems ensures cost-effective and environmentally sound options for supplying future power generation needs. In order to enhance thermal efficiency of IGCC and to reduce NOx emission, a 1500°C-class gas turbine combustor for IGCC was designed, tested, and the performance of the combustor was evaluated under pressurized conditions. The designed combustor had the following three characteristics: (1) in order to assure the stable combustion burning low-Btu gas (LBG), an auxiliary combustion chamber was installed at the entrance of the combustor; (2) to reduce fuel NOx emission that was produced from the ammonia (NH3) in the fuel, the rich-lean combustion method was introduced; and (3) to compensate for the declined cooling-air associated with the higher temperature of the gas turbine, the tested combustor was equipped with a dual-structure transition piece so that the cooling air in the transition piece can be recycled to cool down the combustor liner wall. As a result of combustor tests, it is confirmed that CO emission is less than 20 ppm, the conversion rate of NH3 which contains about 1000 ppm in the coal gasified fuel to NOx shows 40 percent or below, and the liner wall temperature remained below almost 850°C under high pressure (1.4 MPa), rated load condition.


Sign in / Sign up

Export Citation Format

Share Document