scholarly journals Tuning of Turbine Blades: A Theoretical Approach

Author(s):  
P. Gudmundson

A perturbation method is described which predicts the changes in eigenfrequencies resulting from geometrical changes of a structure. This dependence is represented by dimensionless functions, one for each eigenfrequency, which vary over the surface of the structure. The functions are presented for each eigenfrequency as isoline plots. An easily estimated integration of these functions allows one to predict a geometrical change which results in a desired change in the resonance frequencies. The method was applied to a turbine blade and a rectangular beam. For the turbine blade isoline plots are presented for the first five eigenfrequencies. Eigenfrequency changes up to 8 percent were modeled accurately.

1983 ◽  
Vol 105 (2) ◽  
pp. 249-255
Author(s):  
P. Gudmundson

A perturbation method is described which predicts the changes in eigenfrequencies resulting from geometrical changes of a structure. This dependence is represented by dimensionless functions, one for each eigenfrequency, which vary over the surface of the structure. The functions are presented for each eigenfrequency as isoline plots. An easily estimated integration of these functions allows one to predict a geometrical change which results in a desired change in the resonance frequencies. The method was applied to a turbine blade and a rectangular beam. For the turbine blade isoline plots are presented for the first five eigen frequencies. Eigen frequency changes up to 8 percent were modeled accurately.


2021 ◽  
Vol 11 (9) ◽  
pp. 3913
Author(s):  
Kaifeng Zheng ◽  
Jinguang Lü ◽  
Yingze Zhao ◽  
Jin Tao ◽  
Yuxin Qin ◽  
...  

The turbine blade is a key component in an aeroengine. Currently, measuring the turbine blade radiation temperature always requires obtaining the emissivity of the target surface in advance. However, changes in the emissivity and the reflected ambient radiation cause large errors in measurement results. In this paper, a three-wavelength radiation temperature measurement method was developed, without known emissivity, for reflection correction. Firstly, a three-dimensional dynamic reflection model of the turbine blade was established to describe the ambient radiation of the target blade based on the real surface of the engine turbine blade. Secondly, based on the reflection correction model, a three-wavelength radiation temperature measurement algorithm, independent of surface emissivity, was proposed to improve the measurement accuracy of the turbine blade radiation temperature in the engine. Finally, an experimental platform was built to verify the temperature measurement method. Compared with three conventional colorimetric methods, this method achieved an improved performance on blade temperature measurement, demonstrating a decline in the maximum error from 6.09% to 2.13% and in the average error from 2.82% to 1.20%. The proposed method would benefit the accuracy in the high-temperature measurement of turbine blades.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3315
Author(s):  
Liuxi Cai ◽  
Yao He ◽  
Shunsen Wang ◽  
Yun Li ◽  
Fang Li

Based on the establishment of the original and improved models of the turbine blade, a thermal–fluid–solid coupling method and a finite element method were employed to analyze the internal and external flow, temperature, and thermal stress of the turbine blade. The uneven temperature field, the thermal stress distribution characteristics of the composite cooling turbine blade under the service conditions, and the effect of the thickness of the thermal barrier coating (TBC) on the temperature and thermal stress distributions were obtained. The results show that the method proposed in this paper can better predict the ablation and thermal stress damage of turbine blades. The thermal stress of the blade is closely related to the temperature gradient and local geometric structure of the blade. The inlet area of the pressure side-platform of the blade, the large curvature region of the pressure tip of the blade, and the rounding between the blade body and the platform on the back of the blade are easily damaged by thermal stress. Cooling structure optimization and thicker TBC thickness can effectively reduce the high temperature and temperature gradient on the surface and inside of the turbine blade, thereby reducing the local high thermal stress.


Author(s):  
Mahesh M. Bhat ◽  
V. Ramamurti ◽  
C. Sujatha

Abstract Steam turbine blade is a very complex structure. It has geometric complexities like variation of twist, taper, width and thickness along its length. Most of the time these variations are not uniform. Apart from these geometric complexities, the blades are coupled by means of lacing wire, lacing rod or shroud. Blades are attached to a flexible disc which contributes to the dynamic behavior of the blade. Root fixity also plays an important role in this behavior. There is a considerable variation in the frequencies of blades of newly assembled turbine and frequencies after some hours of running. Again because of manufacturing tolerances there can be some variation in the blade to blade frequencies. Determination of natural frequencies of the blade is therefore a very critical job. Problems associated with typical industrial turbine bladed discs of a 235 MW steam turbine are highlighted in this paper.


Author(s):  
Zheyuan Zhang ◽  
Tianyuan Liu ◽  
Di Zhang ◽  
Yonghui Xie

Abstract In this paper, a method for predicting remaining useful life (RUL) of turbine blade under water droplet erosion (WDE) based on image recognition and machine learning is presented. Using the experimental rig for testing the WDE characteristics of materials, the morphology pictures of specimen surface at different times in the process of WDE are collected. According to the data processing method of ASTM-G73 and the cumulative erosion-time curves, the WDE stages of materials is quantitatively divided and the WDE life coefficient (ζ) is defined. The life coefficient (ζ) could be used to calculate the RUL of turbine blades. One convolutional neural network model and three machine learning models are adopted to train and predict the image dataset. Then the training process and feature maps of the Resnet model are studied in detail. It is found that the highest prediction accuracy of the method proposed in this paper can be 0.949, which is considered acceptable to provide reference for turbine overhaul period and blade replacement time.


Author(s):  
Markus Waesker ◽  
Bjoern Buelten ◽  
Norman Kienzle ◽  
Christian Doetsch

Abstract Due to the transition of the energy system to more decentralized sector-coupled technologies, the demand on small, highly efficient and compact turbines is steadily growing. Therefore, supersonic impulse turbines have been subject of academic research for many years because of their compact and low-cost conditions. However, specific loss models for this type of turbine are still missing. In this paper, a CFD-simulation-based surrogate model for the velocity coefficient, unique incidence as well as outflow deviation of the blade, is introduced. This surrogate model forms the basis for an exemplary efficiency optimization of the “Colclough cascade”. In a first step, an automatic and robust blade design methodology for constant-channel blades based on the supersonic turbine blade design of Stratford and Sansome is shown. The blade flow is fully described by seven geometrical and three aerodynamic design parameters. After that, an automated numerical flow simulation (CFD) workflow for supersonic turbine blades is developed. The validation of the CFD setup with a published supersonic axial turbine blade (Colclough design) shows a high consistency in the shock waves, separation zones and boundary layers as well as velocity coefficients. A design of experiments (DOE) with latin hypercube sampling and 1300 sample points is calculated. This CFD data forms the basis for a highly accurate surrogate model of supersonic turbine blade flow suitable for Mach numbers between 1.1 and 1.6. The throat-based Reynolds number is varied between 1*104 and 4*105. Additionally, an optimization is introduced, based on the surrogate model for the Reynolds number and Mach number of Colclough and no degree of reaction (equal inlet and outlet static pressure). The velocity coefficient is improved by up to 3 %.


2021 ◽  
pp. 1-31
Author(s):  
Lorenzo Pinelli ◽  
Andrea Amedei ◽  
Enrico Meli ◽  
Federico Vanti ◽  
Benedetta Romani ◽  
...  

Abstract The need for high performances is pushing the complexity of mechanical design at very high levels, especially for turbomachinery components. Structural topology optimization methods together with additive manufacturing techniques for high resistant alloys are considered very promising tools, but their potentialities have not been deeply investigated yet for critical rotating components like new-generation turbine blades. This research work proposes a methodology for the design, the optimization and the additive manufacturing of extremely stressed turbomachinery components like turbine blade-rows. The presented procedure pays particular attention to important aspects of the problems as fluid-structure interactions and fatigue of materials, going beyond the standard structural optimization approaches found in the literature. The numerical procedure shows robustness and efficiency, making the proposed methodology a good tool for rapid design and prototyping, and for reducing the design costs and the time-to-market typical of these mechanical elements. The procedure has been applied to a low-pressure turbine rotor to improve the aeromechanical behavior while keeping the aerodynamic performance. From the original geometry, mode-shapes, forcing functions and aerodynamic damping have been numerically evaluated and are used as input data for the following topological optimization. Finally, the optimized geometry has been verified in order to confirm the improved aeromechanical design. After the structural topology optimization, the final geometries provided by the procedure have been then properly rendered to make them suitable for additive manufacturing. Some prototypes of the new optimized turbine blade have been manufactured to be tested in terms of fatigue.


2021 ◽  
Author(s):  
Alessio Castorrini ◽  
Paolo Venturini ◽  
Fabrizio Gerboni ◽  
Alessandro Corsini ◽  
Franco Rispoli

Abstract Rain erosion of wind turbine blades represents an interesting topic of study due to its non-negligible impact on annual energy production of the wind farms installed in rainy sites. A considerable amount of recent research works has been oriented to this subject, proposing rain erosion modelling, performance losses prediction, structural issues studies, etc. This work aims to present a new method to predict the damage on a wind turbine blade. The method is applied here to study the effect of different rain conditions and blade coating materials, on the damage produced by the rain over a representative section of a reference 5MW turbine blade operating in normal turbulence wind conditions.


1980 ◽  
Author(s):  
J. Liburdi ◽  
J. O. Stephens

This paper presents the effects of deterioration of gas turbine blade life with prolonged service exposure. This deterioration is primarily due to internal microstructural changes and the formation of creep voids or cavitation. Methods of evaluating residual blade life or life trend curves are presented along with a documentation of the creep damage observed. The extension of blade life by Hot isostatic pressing versus reheat treatment is discussed and data is presented to show that complete recovery of properties can be achieved even after the material has suffered extensive internal creep damage. As a result, the time between overhauls for blades can be significantly extended, and the need for replacement blades can be minimized.


Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


Sign in / Sign up

Export Citation Format

Share Document