geometrical change
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 661
Author(s):  
Mazhar Hussain ◽  
Mattias O’Nils ◽  
Jan Lundgren ◽  
Irida Shallari

To produce flawless glass containers, continuous monitoring of the glass gob is required. It is essential to ensure production of molten glass gobs with the right shape, temperature, viscosity and weight. At present, manual monitoring is common practice in the glass container industry, which heavily depends on previous experience, operator knowledge and trial and error. This results in inconsistent measurements and consequently loss of production. In this article, a multi-camera based setup is used as a non-invasive real-time monitoring system. We have shown that under certain conditions, such as keeping the glass composition constant, it is possible to do in-line measurement of viscosity using sensor fusion to correlate the rate of geometrical change in the gob and its temperature. The correlation models presented in this article show that there is a strong correlation, i.e., 0.65, between our measurements and the projected viscosity.


2021 ◽  
Vol 164 ◽  
pp. 108601
Author(s):  
Alberto Talamo ◽  
Yan Cao ◽  
Yousry Gohar ◽  
V. Valtavirta ◽  
J. Leppänen ◽  
...  
Keyword(s):  

Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 25
Author(s):  
Julian Wunnenberg ◽  
Annabell Rjosk ◽  
Christoph Neinhuis ◽  
Thea Lautenschläger

Peltate- or umbrella- shaped leaves are characterised by a petiole more or less centrally attached to the lamina on the abaxial side. The transition from the petiole to lamina in peltate leaves resembles a significant and abrupt geometrical change from a beam to a plate in a very compact shape. Since these leaves have not been subject of many studies, the distribution of that specific leaf morphology in the plant kingdom was investigated. Furthermore, the connection between the petiole and lamina of several peltate species was studied anatomically and morphologically, focusing on the reinforcing fibre strands. We found peltate leaves in 357 species representing 25 orders, 40 families and 99 genera. The majority are herbaceous perennials growing in shady, humid to wet habitats mainly distributed in the subtropical–tropical zones. Detailed anatomical investigation of 41 species revealed several distinct principles of how the transition zone between the petiole and lamina is organised. In-depth analysis of these different types accompanied by finite element-modelling could serve as inspiration for supporting structures in lightweight construction.


2020 ◽  
Vol 9 (10) ◽  
pp. 3143
Author(s):  
Satoshi Yamaguchi ◽  
Yuka Otaki ◽  
Balaji K. Tamarappoo ◽  
Tetsuya Ohira ◽  
Hiroki Ikenaga ◽  
...  

Increase in left ventricular (LV) mass develops as a compensatory mechanism against pressure overload in aortic valve stenosis. However, long-standing LV geometrical changes are related to poor prognosis. The LV geometrical change occurs after transcatheter aortic valve replacement (TAVR). The present study aimed to investigate the relationship between improvement in valvuloarterial impedance (Zva) and change in LV mass index (LVMI) and the ratio of LVMI to LV end-diastolic volume index (LVMI/LVEDVI). We compared these relationships to that between Zva and mean pressure gradient (MPG). Baseline and follow-up transthoracic echocardiograms of 301 patients who underwent TAVR from November 2011 to December 2015 were reviewed. Spearman correlation coefficient (ρ) was used to compare ΔLVMI and ΔLVMI/LVEDVI with Zva or MPG. The correlation between ΔZva and ΔLVMI (ρ = 0.47, p < 0.001) was superior to that between ΔMPG and ΔLVMI (ρ = 0.15, p = 0.009) (p for comparison < 0.001). The correlation between ΔZva and ΔLVMI/LVEDVI was statistically significant (ρ = 0.54, p < 0.001); in contrast, that of ΔMPG and ΔLVMI/LVEDVI was not. The improvement in Zva after TAVR was more closely related to LVMI and LVMI/LVEDVI reduction than MPG reduction.


2020 ◽  
Vol 639 ◽  
pp. A13 ◽  
Author(s):  
K. I. I. Koljonen ◽  
J. A. Tomsick

Aims. V404 Cyg, Cyg X–3, V4641 Sgr, and GRS 1915+105 are among the brightest X-ray binaries and display complex behavior in their multiwavelength emission. Except for Cyg X–3, the other three sources have large accretion disks, and there is evidence of a high orbital inclination. Therefore, any large-scale geometrical change in the accretion disk can cause local obscuration events. On the other hand, Cyg X–3 orbits its Wolf-Rayet companion star inside the heavy stellar wind obscuring the X-ray source. We study here whether the peculiar X-ray spectra observed from all four sources can be explained by local obscuration events. Methods. We used spectra obtained with the Nuclear Spectroscopic Telescope Array and Rossi X-ray Timing Explorer to study the spectral evolution of the four luminous hard X-ray sources. We fit the time-averaged spectra, and also time-resolved spectra in case of V404 Cyg, with two physically motivated models describing either a scenario where all the intrinsic emission is reprocessed in the surrounding matter or where the emitter is surrounded by a thick torus with variable opening angle. Results. We show that the X-ray spectra during specific times are very similar in all four sources, likely arising from the high-density environments where they are embedded. The fitted models suggest that a low-luminosity phase preceding an intense flaring episode in the 2015 outburst of V404 Cyg is heavily obscured, but intrinsically very bright (super-Eddington) accretion state. Similar spectral evolution to that of V404 Cyg is observed from the recent X-ray state of GRS 1915+105 that presented unusually low luminosity. The modeling results point to a geometry change in the (outflowing) obscuring matter in V404 Cyg and GRS 1915+105, which is also linked to the radio (jet) evolution. Within the framework of the models, all sources display obscured X-ray emission, but with different intrinsic luminosities ranging from lower than 1% of the Eddington luminosity up to the Eddington limit. This indicates that different factors cause the obscuration. This work highlights the importance of taking the reprocessing of the X-ray emission in the surrounding medium into account in modeling the X-ray spectra. This may well take place in other sources as well.


Author(s):  
Tung-Yueh Wu ◽  
Edward C. Ting

An alternative approach for the analysis of flexible structure is presented. Instead of following theories of finite deformation, classical models with infinitesimal strain and engineering stress are assumed as the basis of formulation. A compatible description concept is developed to handle the large geometrical change due to load. Basic concepts are discussed in an accompanied article: ‘Analysis of the changing geometry of flexible structure: 1. Approach and formulation.’ A general procedure to formulate the flexible structural model is proposed. Following the procedure, an algorithm is formulated in this article to study three-dimensional flexible solids. Numerical results are obtained to verify the concept and procedure.


Author(s):  
Edward C. Ting ◽  
Tung-Yueh Wu

An alternative approach for the analysis of flexible structure is presented. Instead of following theories of finite deformation, classical structural models with infinitesimal strain and engineering stress are assumed as the basis of formulation. A compatible concept of description is developed to handle the large geometrical change due to load. The article first discusses: (i) the condition that a classical model can be adopted to formulate a flexible theory of structure and (ii) the procedure to formulate a description of geometry that embraces assumptions of the classical model. Based on the discussion, a general procedure to develop the flexible structural model is proposed. Equations for the cylindrical deformation of a flexible panel are derived as an example. In an accompanying article: ‘Analysis of the changing geometry of flexible structure: 2. Analysis of flexible solid’, an algorithm is developed to study three-dimensional flexible solids. Numerical results are obtained to verify the concept and procedure.


2020 ◽  
Author(s):  
Jakob Abermann ◽  
Wolfgang Schöner ◽  
Robert Schjøtt Fausto

&lt;p&gt;Alfred Wegener contributed extraordinarily to early days of scientific explorations in Greenland. Involved in three expeditions, we present unique historical data that is stored at Graz University, where Wegener filled his last academic position until his tragic death in Greenland in 1930. In this contribution we reevaluate data from his last expedition 1929-1931 acquired at the Qaamarujuup Glacier in West Greenland (71&amp;#176;09'N; 51&amp;#176;11'W). Sub-weekly ablation measurements along with air temperature, humidity, pressure, wind and short-wave radiation data exist for two full ablation seasons both near sea level and in 950 m a.s.l.. The 20&lt;sup&gt;th&lt;/sup&gt; Century reanalysis product of the nearest grid-point performs well reproducing air temperature variability. Coincidentally, this expedition was carried out during a very warm period that was in fact comparable to recent years. We compare vertical ablation gradients from the years 1929/1930 obtained at Qaamarujuup in West Greenland with recent observations from the closest PROMICE automated weather station and discuss differences in a centennial perspective. Furthermore, we present a time-series of glacier stages from the little ice age (LIA) maximum up to present and quantify area and volume changes since. The glacier margin was in close proximity (&lt;50 m distance) to the ocean during the LIA maximum, 660 m and almost 3 km horizontal distance from the ocean in 1930 and in 2019, respectively. Such a drastic geometrical change manifests in differing drivers of the glacier boundary layer with the impact of the cooling ocean during summer decreasing with time as the glacier margin&amp;#8217;s distance to the ocean increases. We discuss the potential in using historical glacio-meteorological measurements along with a detailed glacier history in order to extract geometrical feedbacks from the climate change signal.&lt;/p&gt;


2019 ◽  
Author(s):  
Nima Zamani Meymian ◽  
Hossein Rabiei

In the paper, the effect of gas generator turbine blades’ geometrical change has been studied on the overall performance of a twin-shaft 25MW gas turbine with industrial application, under dynamic conditions. Geometrical changes include change of thickness and height of gas generator turbine blades which in turn would result in the change in the mass flow rate of passing hot gas, as well as isentropic efficiency in each stage of the turbine. Gas turbine modeling in the paper is zero-dimensional and takes place with consideration of dynamic effects of volume on air compressor components, combustion chamber, gas generator turbine, power turbine, fuel system, as well as effects of heat transfer dynamics between blades, gas path, and effects of operators on inlet guide vanes, fuel valves, and air compressor discharge valve. In the mathematical model of each of the components, steady-state characteristics curves have been used, extracted from 3-Dimensional computational fluid dynamics (CFD). To do so, characteristic curves of the first and second stages of the four-stage turbine have been updated through 3-D fluid dynamic analysis so that the effect of geometrical changes in turbine blades would be applied. Results from effects of these changes on characteristics of transient gas flow including output power of gas generator turbine and power turbine, inlet and outlet temperatures of turbine stages, as well as air and fuel mass flow rates have been provided from the start-ups until reaching the nominal load would be achieved.


Sign in / Sign up

Export Citation Format

Share Document