scholarly journals The Constant Volume Gas Turbine Cycle According to Karavodine

1982 ◽  
Author(s):  
H. Vandermeulen

The basic distinction between the constant volume cycle and the well known constant pressure cycle for gas turbines is the method of heat supply, which necessitates a system of combustion chamber valves to contain the fluid. The object of the proposed cycle analysis, which is mainly based on the fundamental laws of mass and energy, will consider a solution for the discrepancies between the former theory and practice of constant volume gas turbines. The overall performance characteristics which emerge from this analysis show the distinct superiority of the one-valve Karavodine cycle. Evaluation by experiment for this cycle variant shows, however, besides a refinement of the model, a marginal superiority in performance for the Brayton gas turbine at low pressure ratios. Any application could probably be justified by incorporating it in Brayton turbines to diminish starting power and to improve part load performance.

Author(s):  
Osvaldo José Venturini ◽  
Sebastião Varella

The purpose of this work is to analyze a gas turbine working under a cycle similar to the one proposed, by the Dr. Holtzwarth, at the beginning of the last century, showing its potentiality, mainly when applied to small power turbines. The method for analysis is based in the quasi-steady thermodynamic equilibrium principle, where the effects of the pressure and temperature variation, due to the intermittent combustion, are considered. Conclusions are presented considering the increase of the thermal efficiency and the available specific work, resulting from the constant volume combustion, when compared with those of a turbine operating under constant pressure combustion (Brayton Cycle). These results are obtained using actual curves of operation for the compressor and the turbine and, as well as, the “matching” of them.


Author(s):  
M. Zockel

A quasi-steady-state analysis is made of the performance of a gas-turbine working with intermittent, constant volume combustion. Variables considered include inlet temperature, compressor pressure ratio, scavenge ratio, combustion time, heat exchanger thermal ratio. Characteristics are computed over a full loading range. Computations are based on turbines having the following behavior: (a) constant turbine efficiency, (b) characteristics of a multistage axial turbine, and (c) characteristics of a single-stage radial turbine. The analysis indicates that the constant volume gas turbine has advantages in thermal efficiency, specific power and part load performance over constant pressure gas turbines operating at the same compressor pressure ratio and turbine inlet temperature. However, the addition of a heat exchanger shows less advantage when applied to a constant volume than to a constant pressure engine.


1994 ◽  
Vol 22 (3) ◽  
pp. 209-227 ◽  
Author(s):  
F. Moukalled ◽  
I. Lakkis

This paper describes a microcomputer-based, interactive, and menu-driven software package designed to help mechanical engineering students to understand gas turbines and to allow them to conduct more analysis of gas turbine cycles than they would normally be able to do by hand-calculation. The program deals with gas turbine cycle analysis so the acronym GTCA is used. GTCA is written in the Pascal computer language and runs on IBM PC, or compatible, computers. Improvements to the basic Brayton cycle, including three compressor and turbine stages, reheater, heat exchanger, intercooler, and precooler are incorporated into the program. The package is highly flexible and allows the user to model cycle schemes formed of any combination of these elements and to handle both shaft power turbines and aircraft turbojet and turbofan turbines. An important feature of the program is its ability to solve for any unknown variables. In addition to this, the program provides a schematic of the turbine plant layout and a temperature-entropy diagram of the cycle, and permits the plotting of the variation of any quantity versus any other quantity. This option enables the student to easily study and understand the effects of changing design variables on the overall performance of the cycle and permits its optimization. The statistical survey conducted along with the examples presented demonstrate the capabilities of the package as a teaching tool.


Author(s):  
Douglas A. Pennell ◽  
Mirko R. Bothien ◽  
Andrea Ciani ◽  
Victor Granet ◽  
Ghislain Singla ◽  
...  

This paper introduces and presents validation of the Constant Pressure Sequential Combustion system (denoted CPSC), a second generation concept developed for and applied to the new Ansaldo GT36 H-class gas turbine combustors. It has evolved from the well-established sequential burner technology applied to all current GT26 and GT24 gas turbines, and contains all architectural improvements implemented since original inception of this engine frame in 1994, with beneficial effects on the operation turndown, fuel flexibility, on the overall system robustness, and featuring the required aspects to stay competitive in the present day energy market. The applied air and fuel management therefore facilitate emission and dynamics control at both the extremely high and low firing temperature ranges required for existing and future Ansaldo gas turbine engine classes.


Author(s):  
Oanh Nguyen ◽  
Scott Samuelsen

In view of increasingly stringent NOx emissions regulations on stationary gas turbines, lean combustion offers an attractive option to reduce reaction temperatures and thereby decrease NOx production. Under lean operation, however, the reaction is vulnerable to blowout. It is herein postulated that pilot hydrogen dopant injection, discretely located, can enhance the lean blowout performance without sacrificing overall performance. The present study addresses this hypothesis in a research combustor assembly, operated at atmospheric pressure, and fired on natural gas using rapid mixing injection, typical of commercial units. Five hydrogen injector scenarios are investigated. The results show that (1) pilot hydrogen dopant injection, discretely located, leads to improved lean blowout performance and (2) the location of discrete injection has a significant impact on the effectiveness of the doping strategy.


Author(s):  
G. K. Conkol ◽  
T. Singh

As vehicles evolve through the concept phase, a wide variety of engines are usually considered. For long-life vehicles such as heavy armored tracked vehicles, gas turbines have been favored because of their weight and volume characteristics at high hp levels (1500 to 2000 hp). Many existing gas turbine engines, however, are undesirable for vehicular use because their original design philosophy was aircraft oriented. In a ground vehicle, mass flow and expense are only two areas in which these engines differ greatly. Because the designer generally is not given the freedom to design an engine from scratch, he must evaluate modifications of the basic Brayton cycle. In this study, various cycles are evaluated by using a design point program in order to optimize design parameters and to recommend a cycle for heavy vehicular use.


Author(s):  
Nicolai Neumann ◽  
Dieter Peitsch ◽  
Arne Berthold ◽  
Frank Haucke ◽  
Panagiotis Stathopoulos

Abstract Performance improvements of conventional gas turbines are becoming increasingly difficult and costly to achieve. Pressure Gain Combustion (PGC) has emerged as a promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine cycle. Previous cycle analyses considering turbine cooling methods have shown that the application of pressure gain combustion may require more turbine cooling air. This has a direct impact on the cycle efficiency and reduces the possible efficiency gain that can potentially be harvested from the new combustion technology. Novel cooling techniques could unlock an existing potential for a further increase in efficiency. Such a novel turbine cooling approach is the application of pulsed impingement jets inside the turbine blades. In the first part of this paper, results of pulsed impingement cooling experiments on a curved plate are presented. The potential of this novel cooling approach to increase the convective heat transfer in the inner side of turbine blades is quantified. The second part of this paper presents a gas turbine cycle analysis where the improved cooling approach is incorporated in the cooling air calculation. The effect of pulsed impingement cooling on the overall cycle efficiency is shown for both Joule and PGC cycles. In contrast to the authors’ anticipation, the results suggest that for relevant thermodynamic cycles pulsed impingement cooling increases the thermal efficiency of Joule cycles more significantly than it does in the case of PGC cycles. Thermal efficiency improvements of 1.0 p.p. for pure convective cooling and 0.5 p.p. for combined convective and film with TBC are observed for Joule cycles. But just up to 0.5 p.p. for pure convective cooling and 0.3 p.p. for combined convective and film cooling with TBC are recorded for PGC cycles.


Author(s):  
R. Yadav ◽  
P. Sreedhar Yadav

The major challenges before the design engineers of a gas turbine plant and its variants are the enhancement of power output, substantial reduction in NOx emission and improvement in plant thermal efficiency. There are various possibilities to achieve these objectives and humid air gas turbine cycle power plant is one of them. The present study deals with the thermodynamic study of humid air gas turbine cycle power plants based on first law. Using the modeling and governing equations, the parametric study has been carried out. The results obtained will be helpful in designing the humid air gas turbines, which are used as peaking units. The comparison of performance of humid air gas turbine cycle shows that it is superior to basic gas turbine cycle but inferior and more complex to steam injected cycle.


Author(s):  
Panteleimon Kazatzis ◽  
Riti Singh ◽  
Pericles Pilidis ◽  
Jean-Jacques Locquet

The power-speed requirements of warships and the poor part load efficiency of simple cycle gas turbines has given rise to the design of many ship installations where two types of gas turbines are used. A large type for high speed, at full power, and a small one for cruise. It is common to mount two units of each type. This design results in a large amount of bulky and heavy ducting, much more voluminous and heavy than the gas turbines themselves. The present paper outlines an investigation into a novel intercooled split-cycle with some deck mounted components. This reduces the requirement for internal ducts in the ships hull, essentially, to those needed by the cruise engine. The engine performance has been predicted and a comparison is carried out between a traditional installation and the one investigated. An estimate has been carried out of the flow conditions of the duct to assess the change in losses for operation in the cruise and the full power condition. The new scheme appears to be promising.


Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength and component functionality requirements while in consideration of the applicable materials, realizable manufacturing and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design and overall performance prediction of a millimeter-scale radial turbine with rotor diameter of 10mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the micro radial turbine. The leaving velocity loss in micro gas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number thus improving the total-static efficiency. Different from general gas turbines, micro gas turbines are operated in low Reynolds numbers, 104∼105, which has significant effect on flow separation, heat transfer and laminar to turbulent flow transition. Based on the selected rotor profile, several micro gas turbine configurations with different tip clearances of 0.1mm, 0.2mm and 0.3mm, respectively; two different isothermal wall conditions; and two laminar-turbulent transition models were investigated to understand the particular influence of low Reynolds number. These influences on the overall performance of the micro gas turbine were analyzed in details. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale micro radial turbines.


Sign in / Sign up

Export Citation Format

Share Document