Calculation of a Three-Dimensional Turbomachinery Rotor Flow With a Navier-Stokes Code

Author(s):  
Matthew J. Warfield ◽  
B. Lakshminarayana

This paper deals with a numerical solution of the full Navier-Stokes equations governing the flowfield in a turbomachinery rotor. The incompressible equations are solved using a pseudocompressibility time marching code. A two-equation turbulence model (k-ε) coupled with a vectorial eddy viscosity model based on an Algebraic Reynolds Stress Model is used to account for the anisotropic effects of rotation and three dimensionality. The predictions are compared with laser doppler velocimeter and hot wire data acquired in a compressor rotor passage at two different flow coefficients. The predicted blade to blade profiles of velocity at various radial locations as well as the streamwise velocity profiles in the blade boundary layer show good agreement with experimental data. The radial velocities are qualitatively predicted but good comparison with data was not achieved. Boundary layer growth is predicted reasonably well.

1987 ◽  
Vol 109 (1) ◽  
pp. 83-90 ◽  
Author(s):  
W. N. Dawes

The numerical analysis of highly loaded transonic compressors continues to be of considerable interest. Although much progress has been made with inviscid analyses, viscous effects can be very significant, especially those associated with shock–boundary layer interactions. While inviscid analyses have been enhanced by the interactive inclusion of blade surf ace boundary layer calculations, it may be better in the long term to develop efficient algorithms to solve the full three-dimensional Navier–Stokes equations. Indeed, it seems that many phenomena of key interest, like tip clearance flows, may only be accessible to a Navier–Stokes solver. The present paper describes a computer program developed for solving the three-dimensional viscous compressible flow equations in turbomachine geometries. The code is applied to the study of the flowfield in an axial-flow transonic compressor rotor with an attempt to resolve the tip clearance flow. The predicted flow is compared with laser anemometry measurements and good agreement is found.


2010 ◽  
Vol 297-301 ◽  
pp. 924-929
Author(s):  
Inès Bhouri Baouab ◽  
Nejla Mahjoub Said ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot

The present work consists in a numerical examination of the dispersion of pollutants discharged from a bent chimney and crossing twin similar cubic obstacles placed in the lee side of the source. The resulting flow is assumed to be steady, three-dimensional and turbulent. Its modelling is based upon the resolution of the Navier Stokes equations by means of the finite volume method together with the RSM (Reynolds Stress Model) turbulent model. This examination aims essentially at detailing the wind flow perturbations, the recirculation and turbulence generated by the presence of the twin cubic obstacles placed tandem at different spacing distances (gaps): W = 4 h, W = 2 h and W = 1 h where W is the distance separating both buildings.


Author(s):  
Chunill Hah ◽  
Douglas C. Rabe ◽  
Thomas J. Sullivan ◽  
Aspi R. Wadia

The effects of circumferential distortions in inlet total pressure on the flow field in a low-aspect-ratio, high-speed, high-pressure-ratio, transonic compressor rotor are investigated in this paper. The flow field was studied experimentally and numerically with and without inlet total pressure distortion. Total pressure distortion was created by screens mounted upstream from the rotor inlet. Circumferential distortions of 8 periods per revolution were investigated at two different rotor speeds. The unsteady blade surface pressures were measured with miniature pressure transducers mounted in the blade. The flow fields with and without inlet total pressure distortion were analyzed numerically by solving steady and unsteady forms of the Reynolds-averaged Navier-Stokes equations. Steady three-dimensional viscous flow calculations were performed for the flow without inlet distortion while unsteady three-dimensional viscous flow calculations were used for the flow with inlet distortion. For the time-accurate calculation, circumferential and radial variations of the inlet total pressure were used as a time-dependent inflow boundary condition. A second-order implicit scheme was used for the time integration. The experimental measurements and the numerical analysis are highly complementary for this study because of the extreme complexity of the flow field. The current investigation shows that inlet flow distortions travel through the rotor blade passage and are convected into the following stator. At a high rotor speed where the flow is transonic, the passage shock was found to oscillate by as much as 20% of the blade chord, and very strong interactions between the unsteady passage shock and the blade boundary layer were observed. This interaction increases the effective blockage of the passage, resulting in an increased aerodynamic loss and a reduced stall margin. The strong interaction between the passage shock and the blade boundary layer increases the peak aerodynamic loss by about one percent.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


1986 ◽  
Author(s):  
B. Lakshminarayana ◽  
P. Popovski

A comprehensive study of the three-dimensional turbulent boundary layer on a compressor rotor blade at peak pressure rise coefficient is reported in this paper. The measurements were carried out at various chordwise and radial locations on a compressor rotor blade using a rotating miniature “V” configuration hot-wire probe. The data are compared with the measurement at the design condition. Substantial changes in the blade boundary layer characteristics are observed, especially in the outer sixteen percent of the blade span. The increased chordwise pressure gradient and the leakage flow at the peak pressure coefficient have a cumulative effect in increasing the boundary layer growth on the suction surface. The leakage flow has a beneficial effect on the pressure surface. The momentum and boundary layer thicknesses increase substantially from those at the design condition, especially near the outer radii of the suction surface.


1975 ◽  
Vol 42 (3) ◽  
pp. 575-579 ◽  
Author(s):  
J. C. Chien ◽  
J. A. Schetz

The steady, three-dimensional, incompressible Navier-Stokes equations written in terms of velocity, vorticity, and temperature are solved numerically for channel flows and a jet in a cross flow. Upwind differencing of the convection term was used in the computation for convergence and simplicity. Comparisons were made with experimental results for laminar flow in the entrance region of a square channel, and good agreement was obtained. The method was also applied to a turbulent, buoyant jet in a cross-flow problem with the Boussinesq approximation and a constant Prandtl eddy viscosity model. Good agreement with experiment was obtained in this case also.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Ali Shokrgozar Abbassi ◽  
Asghar Baradaran Rahimi

The existing solutions of Navier–Stokes and energy equations in the literature regarding the three-dimensional problem of stagnation-point flow either on a flat plate or on a cylinder are only for the case of axisymmetric formulation. The only exception is the study of three-dimensional stagnation-point flow on a flat plate by Howarth (1951, “The Boundary Layer in Three-Dimensional Flow—Part II: The Flow Near Stagnation Point,” Philos. Mag., 42, pp. 1433–1440), which is based on boundary layer theory approximation and zero pressure assumption in direction of normal to the surface. In our study the nonaxisymmetric three-dimensional steady viscous stagnation-point flow and heat transfer in the vicinity of a flat plate are investigated based on potential flow theory, which is the most general solution. An external fluid, along z-direction, with strain rate a impinges on this flat plate and produces a two-dimensional flow with different components of velocity on the plate. This situation may happen if the flow pattern on the plate is bounded from both sides in one of the directions, for example x-axis, because of any physical limitation. A similarity solution of the Navier–Stokes equations and energy equation is presented in this problem. A reduction in these equations is obtained by the use of appropriate similarity transformations. Velocity profiles and surface stress-tensors and temperature profiles along with pressure profile are presented for different values of velocity ratios, and Prandtl number.


Author(s):  
I. K. Jennions ◽  
M. G. Turner

Computational fluid dynamics (CFD) has become a powerful ally of the experimental test facility in revealing the flow physics of some highly complex flows. For certain classes of flow, CFD has reached maturity and is therefore being increasingly used in industry by designers. This paper is intended to show current transonic prediction capability at GE Aircraft Engines in terms of a recently developed 3D Navier-Stokes code. The flow simulations addressed are concerned with transonic fan design and illustrate those issues that are important to designers such as tip leakage flow, shock boundary layer interaction, boundary layer growth and account of internal solid bodies such as part-span shrouds and engine splitters. In this respect, three successively more complex Navier-Stokes simulations representative of modern fans: NASA Rotor 67, GE/Wennerstrom Rotor 4, and the GE/NASA E3 fan, are considered in this paper.


1998 ◽  
Vol 120 (2) ◽  
pp. 233-246 ◽  
Author(s):  
C. Hah ◽  
D. C. Rabe ◽  
T. J. Sullivan ◽  
A. R. Wadia

The effects of circumferential distortions in inlet total pressure on the flow field in a low-aspect-ratio, high-speed, high-pressure-ratio, transonic compressor rotor are investigated in this paper. The flow field was studied experimentally and numerically with and without inlet total pressure distortion. Total pressure distortion was created by screens mounted upstream from the rotor inlet. Circumferential distortions of eight periods per revolution were investigated at two different rotor speeds. The unsteady blade surface pressures were measured with miniature pressure transducers mounted in the blade. The flow fields with and without inlet total pressure distortion were analyzed numerically by solving steady and unsteady forms of the Reynolds-averaged Navier–Stokes equations. Steady three-dimensional viscous flow calculations were performed for the flow without inlet distortion while unsteady three-dimensional viscous flow calculations were used for the flow with inlet distortion. For the time-accurate calculation, circumferential and radial variations of the inlet total pressure were used as a time-dependent inflow boundary condition. A second-order implicit scheme was used for the time integration. The experimental measurements and the numerical analysis are highly complementary for this study because of the extreme complexity of the flow field. The current investigation shows that inlet flow distortions travel through the rotor blade passage and are convected into the following stator. At a high rotor speed where the flow is transonic, the passage shock was found to oscillate by as much as 20 percent of the blade chord, and very strong interactions between the unsteady passage shock and the blade boundary layer were observed. This interaction increases the effective blockage of the passage, resulting in an increased aerodynamic loss and a reduced stall margin. The strong interaction between the passage shock and the blade boundary layer increases the peak aerodynamic loss by about one percent.


Sign in / Sign up

Export Citation Format

Share Document