scholarly journals A Computer Program to Analyze Cogeneration Plant Heat Balances and Equipment Design

Author(s):  
J. C. Stewart ◽  
C. F. Hsun

This paper describes a computer program designed to calculate and analyze cogeneration plant heat balances and equipment and to plot heat balance diagrams. For normal design point conditions, the program calculates gas turbine performance, designs a heat recovery boiler to suit the process requirements, calculates a steam turbine performance and deaerator balance to complete the cycle. In addition, the program will calculate off-design performance for a supplementary firing option or for changes in ambient conditions, gas turbine part load or process conditions.

Author(s):  
Georgia C. Karvountzi ◽  
Clifford M. Price ◽  
Paul F. Duby

High temperature fuel cells can be integrated in a hybrid cycle with a gas turbine and achieve lower heating value (LHV) efficiencies of about 70%. A hybrid cycle designed for cogeneration applications could lead to even higher LHV efficiencies such as 78% to 80% without post combustion and 85%–90% with post combustion. The purpose of the present paper is to optimize the integration of a high temperature fuel cell in a cogeneration cycle. We used Gatecycle™ heat balance software by GE Enter Software, LLC, to design a 20–80 MW high efficiency cogeneration plant. Since Gatecycle™ does not have an icon for the fuel cell, we calculated the heat balance for the fuel cell stack in Microsoft® Excel and we imported the results into Gatecycle™. We considered a 8.5 MW, a 17 MW and a 34 MW fuel cell by scaling up of the commercially available 3MW molten carbonate fuel cell (MCFC). Our goal was to evaluate the optimum ratio between the fuel cell size and gas turbine size using a family of curves we developed showing LHV “electric” efficiency versus power for different ratios of “fuel cell–to–gas turbines size”. Similar curves showing LHV “cogeneration” efficiency are also presented. In addition configurations with a back pressure steam turbine and with a condensing steam turbine are evaluated. The influence of steam generation pressure in the overall system efficiency is discussed, as well as the performance of the hybrid system for different temperatures (0°F–80°F) and elevations (0 ft–3000 ft). Our conclusion is that high temperature fuel cells in a hybrid configuration with gas turbines could be successfully integrated into a cogeneration plant to achieve very high efficiencies.


Author(s):  
Tarek A. Tawfik ◽  
Thomas P. Smith

Retrofitting existing power generation plants by repowering is becoming an attractive option to improve plant performance with less cost. “Hot Windbox Repowering” involves utilizing the hot exhaust gas from a combustion gas turbine and using it as combustion air for an existing fossil-fuel boiler. “Combined Cycle Repowering” or “Full Repowering” involves completely replacing the existing boiler with a combined cycle consisting of a gas turbine(s) and a heat recovery steam generator (HRSG). The existing steam turbine will be used in both repowering scenarios. This paper discusses an engineering study and summarizes the results obtained from repowering an existing heavy-oil / natural gas fired steam power plant in the north east of the United States. The plant consists of a 600 MW boiler and steam turbine. Several engineering studies were considered and evaluated thermodynamically and economically to retrofit such plant. Several options were considered involving different gas turbines, gas turbine combinations, and different repowering methods. The best option is based on retrofitting the unit by a combination of both, hot windbox repowering and combined cycle repowering. The proposed design consists of one gas turbine repowering the windbox of the existing boiler, and a second gas turbine operating in a separate combined cycle configuration with the generated superheated steam tying into the main steam line and expanding in the existing steam turbine. Several heat balances were developed to assist in obtaining meaningful results for this feasibility study. Actual costs were obtained for the gas turbines and heat recovery steam generators (HRSG), as well as installation costs for a more accurate evaluation. The results indicate that the combined output of the repowered unit will generate an additional 295 MW and reduce the heat rate by more than 11 percent at full load and annual average ambient conditions. The estimated capital cost of the project is expected to range from $235 to $245 millions.


Author(s):  
J. C. Stewart ◽  
H. J. Stretch

This paper presents details of a heat-recovery boiler design as applied to gas turbine exhaust for the generation of steam. The factors involved in such applications are reviewed, together with an explanation of the heat-balance calculations and the limits that apply. A description is given of the parameters used in the design of the heat-transfer surface in the boiler. A specific design is described including details of the components in the boiler train. Reference is made to factors to be considered in erection and installation of this equipment. An explanation is included of the computer programs used to determine the optimum heat balance and for boiler selection and performance at “off-design” operating points. The operating performance of an actual installation is included.


Author(s):  
R. W. Foster-Pegg

A gas turbine cogeneration plant produces power and process steam. Under the PURPA law, surplus electric power can be sold to the local utility. Since process steam generally cannot be exported, it is better to have an excess of power than an excess of steam. Because of low rates offered for surplus power, or for other possible reasons, an owner may not wish to sell power, so it may be necessary to operate at a power-to-steam ratio that does not match the outputs of a gas turbine with a simple heat recovery boiler. If more steam is needed, supplementary firing may be included in the heat recovery boiler. If the need is for more power, a back pressure steam turbine can be included. This reduces the steam output by requiring higher steam pressure. Further power increase and steam reduction can be obtained with a condensing steam turbine. If neither the full steam output nor additional power is required, capital cost can be reduced by inclusion of a smaller, less-efficient heat recovery boiler. This paper compares these means of adjusting the power and steam outputs of a gas turbine cogeneration system to obtain the most cost effective system.


Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


2014 ◽  
Vol 659 ◽  
pp. 503-508
Author(s):  
Sorin Gabriel Vernica ◽  
Aneta Hazi ◽  
Gheorghe Hazi

Increasing the energy efficiency of a gas turbine plant can be achieved by exhaust gas heat recovery in a recovery boiler. Establishing some correlations between the parameters of the boiler and of the turbine is done usually based on mathematical models. In this paper it is determined from experimental point of view, the effectiveness of a heat recovery boiler, which operates together with a gas turbine power plant. Starting from the scheme for framing the measurement devices, we have developed a measurement procedure of the experimental data. For experimental data processing is applied the effectiveness - number of transfer unit method. Based on these experimental data we establish correlations between the recovery boiler effectiveness and the gas turbine plant characteristics. The method can be adapted depending on the type of flow in the recovery boiler.


Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Gas turbine performance has been analyzed for a fleet of GE LM2500 engines at two Statoil offshore fields in the North Sea. Both generator drive engines and compressor driver engines have been analyzed, covering both the LM2500 base and plus configurations, as well as the SAC and DLE combustor configurations. Several of the compressor drive engines are running at peak load (T5.4 control), and the production rate is thus limited to the available power from these engines. The majority of the engines discussed run continuously without redundancy, implying that gas turbine uptime is critical for the field’s production and economy. Previous studies and operational experience have emphasized that the two key factors to minimize compressor fouling are the optimum designs of the inlet air filtration system and the water wash system. An optimized inlet air filtration system, in combination with daily online water wash (at high water-to-air ratio), are the key factors to achieve successful operation at longer intervals between offline washes and higher average engine performance. Operational experience has documented that the main gas turbine recoverable deterioration is linked to the compressor section. The main performance parameter when monitoring compressor fouling is the gas turbine compressor efficiency. Previous studies have indicated that inlet depression (air mass flow at compressor inlet) is a better parameter when monitoring compressor fouling, whereas instrumentation for inlet depression is very seldom implemented on offshore gas turbine applications. The main challenge when analyzing compressor efficiency (uncorrected) is the large variation in efficiency during the periods between offline washes, mainly due to operation at various engine loads and ambient conditions. Understanding the gas turbine performance deterioration is of vital importance. Trending of the deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Instrument resolution and repeatability are key factors for attaining reliable results in the performance analysis. A correction methodology for compressor efficiency has been developed, which improves the long term trend data for effective diagnostics of compressor degradation. Avenues for further research and development are proposed in order to further increase the understanding of the deterioration mechanisms, as well as gas turbine performance and response.


1984 ◽  
Vol 28 (04) ◽  
pp. 240-260
Author(s):  
Robert Latorre ◽  
Zisimos Mourelatos ◽  
Efstratios Nikolaidis

A theoretical model of a steam turbine is formulated based on idealized Curtis and reaction stages to obtain expressions for a stage-by-stage evaluation of the turbine state line. Using typical stage geometries and corrections a computer program was developed to size the turbine and evaluate its state line at design conditions. A comparison of the heat balance made with the stage-by-stage state line and the standard heat balance is presented. For the design case of 30 000 shp it is shown that the differences in the heat balance calculation results are within ±0.5 percent.


2020 ◽  
Vol 8 (9) ◽  
pp. 726
Author(s):  
Wahyu Nirbito ◽  
Muhammad Arif Budiyanto ◽  
Robby Muliadi

This study explains the performance analysis of a propulsion system engine of an LNG tanker using a combined cycle whose components are gas turbine, steam turbine, and heat recovery steam generator. The researches are to determine the total resistance of an LNG tanker with a capacity of 125,000 m3 by using the Maxsurf Resistance 20 software, as well as to design the propulsion system to meet the required power from the resistance by using the Cycle-Tempo 5.0 software. The simulation results indicate a maximum power of the system of about 28,122.23 kW with a fuel consumption of about 1.173 kg/s and a system efficiency of about 48.49% in fully loaded conditions. The ship speed can reach up to 20.67 knots.


Sign in / Sign up

Export Citation Format

Share Document