Navier-Stokes Computation on a Pivoting Doors Thrust Reverser and Comparison With Tests

Author(s):  
L. Schreiber ◽  
M. Legras

An engine thrust reverser must meet different aerodynamic requirements to take into account the engine and airplane integration. These requirements are: - Control of the exit area in order to assess a convenient engine compatibility during the reverser operation. - Generation of reverse thrust meeting the level specified by the airframe in order to slowdown the airplane. - Mimization of the reversed flow field interaction with the airplane structure such as wing and shutters. - Avoid the flow reingestion by the engine fan. In order to reduce the tests number, to decrease the development delay and to improve aerodynamic performance, SNECMA group (SNECMA and HISPANO-SUIZA) has decided to develop a CFD method adapted to pivoting doors thrust reverser aerodynamic calculation. This method uses a Navier-Stokes 3D solver (PHOENICS code) well adapted to complex geometry and complex flow field. The mesh is generated with an analytical method and only one domain is used. The computation has been completed assuming laminar viscosity. The numerical data got with this method have been compared to static test realized on a model similar to actual CFM56-5C four doors reverser. The comparison parameters are the static pressure on the doors, the flow rate and the axial reverse thrust.

2005 ◽  
Vol 49 (02) ◽  
pp. 98-120
Author(s):  
Claus D. Simonsen ◽  
Frederick Stern

A simplified potential theory-based infinite-bladed propeller model is coupled with the Reynolds averaged Navier-Stokes (RANS) code CFDSHIP-IOWA to give a model that interactively determines propeller-hull-rudder interaction without requiring detailed modeling of the propeller geometry. Computations are performed for an open-water propeller, for the Series 60 ship sailing straight ahead and for the appended tanker Esso Osaka in different maneuvering conditions. The results are compared with experimental data, and the tanker data are further used to study the interaction among the propeller, hull, and rudder. A comparison between calculated and measured data for the Series 60 ship shows fair agreement, where the computation captures the trends in the flow, that is, the flow structure and the magnitude of the field quantities together with the integral quantities. For the tanker, the flow study reveals a rather complex flow field in the stern region, where the velocity distribution and propeller loading reflect the flow field changes caused by the different maneuvering conditions. The integral quantities, that is, the propeller, hull, and rudder forces, are in fair agreement with experiments. No formal verification and validation are performed, so the present results are related to previous work with verification and validation of the same model, but without the propeller. For the validated cases, the levels of validation are the same as without the propeller, because the validation uncertainties, that is, the combined experimental and simulation uncertainties, are assumed to be the same for both cases. Based on this, validation is obtained for approximately the same cases as for the without-propeller conditions, but the comparison errors, that is, the difference between experiment and calculation, are different. For instance, the difference between computation and experiment for the ship resistance is generally larger with the propeller than without, whereas the opposite is the case for the rudder drag. Summarizing the results, the method shows encouraging results, and taking the effort related to modeling the propeller into account, the method appears to be useful in connection with studies of rudder-propeller-hull related flow problems, where the real propeller geometry cannot be modeled.


Author(s):  
P. Peters ◽  
J. R. Menter ◽  
H. Pfost ◽  
A. Giboni ◽  
K. Wolter

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with shrouded rotor blades and a straight through labyrinth seal. The paper focuses on the time dependent influence of the leakage flow on the downstream stator flow field. The experimental program consists of time accurate measurements of the three-dimensional properties of the flow through ten different measurement planes in the stator passage. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes extend from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 4,800 measurement points and 20 time steps per blade passing period. The time-accurate experimental data of the ten measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the flow phenomena. Additionally numerical data behind the rotor is used to connect the entry of the leakage flow with the flow phenomena in the downstream stator passage and behind it. The leakage flow causes strong fluctuations of the flow in the downstream stator. Above all, the high number of measurement points reveals both the secondary flow phenomena and the vortex structures within the blade passage. The time-dependence of both the position and the intensity of the vortices influenced by the leakage flow is shown. The paper shows that even at realistic clearance heights the leakage flow influences considerable parts of the downstream stator and gives rise to negative incidence and flow separation. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbines.


Author(s):  
Charles M. Dai ◽  
Ronald W. Miller

This paper reports on the comparison between computational simulations and experimental measurements of a surface vessel in steady turning conditions. The primary purpose of these efforts is to support the development of physics-based high fidelity maneuvering simulation tools by providing accurate and reliable hydrodynamic data with relevance to maneuvering performances. Reynolds Averaged Unsteady Navier Stokes Solver (URANS): CFDSHIPIOWA was used to perform simulations for validation purposes and for better understanding of the fundamental flow physics of a hull under maneuvering conditions. The Propeller effects were simulated using the actuator disk model included in CFDShip-Iowa. The actuator disk model prescribes a circumferential averaged body force with axial and tangential components. No propeller generated side forces are accounted for in the model. This paper examines the effects of actuator disk model on the overall fidelity of a RANS based ship maneuvering simulations. Both experiments and simulations provide physical insights into the complex flow interactions between the hull and various appendages, the rudders and the propellers. The experimental effort consists of flow field measurements using Stereo Particle-Image Velocimetry (SPIV) in the stern region of the model and force and moment measurements on the whole ship and on ship components such as the bilge keels, the rudders, and the propellers. Comparisons between simulations and experimental measurements were made for velocity distributions at different transverse planes along the ship axis and different forces components for hull, appendages and rudders. The actuator disk model does not predict any propeller generated side forces in the code and they need to be taken into account when comparing hull and appendages generated side forces in the simulations. The simulations were compared with experimental results and they both demonstrate the cross flow effect on the transverse forces and the propeller slip streams generated by the propellers during steady turning conditions. The hull forces (include hull, bilge keels, skeg, shafting and strut) predictions were better for large turning circle case as compared with smaller turning circle. Despite flow field simulations appear to capture gross flow features qualitatively; detailed examinations of flow distributions reveal discrepancies in predictions of propeller wake locations and secondary flow structures. The qualitative comparisons for the rudders forces also reveal large discrepancies and it was shown that the primary cause of discrepancies is due to poor predictions of velocity inflow at the rudder plane.


1996 ◽  
Vol 118 (4) ◽  
pp. 835-843 ◽  
Author(s):  
B. V. Marathe ◽  
B. Lakshminarayana ◽  
Y. Dong

The objective of this investigation is to understand the nature of the complex flow field inside each element of the torque converter through a systematic experimental and numerical investigation of the flow field. A miniature five-hole probe was used to acquire the data at the exit of the stator at several operating conditions. The flow field is found to be highly three dimensional with substantial flow deviations, and secondary flow at the exit of the stator. The secondary flow structure, caused by the upstream radial variation of the through flow, induces flow overturning near the core. Flow separation near the shell causes flow underturning in this region. The rate of decay of stator wake is found to be slower than that observed in the wakes of axial flow turbine nozzles. The flow predictions by a Navier–Stokes code are in good agreement with the pressure and the flow field measured at the exit of the stator at the design and the off-design conditions.


Author(s):  
Hadi Karrabi ◽  
Mohsen Rezasoltani

An investigation to understand the impact of twisted, leaned and bowed blades on the performance of axial turbine was undertaken. A CFD code, which solves the Reynolds-averaged Navier–Stokes equations, was used to compute the complex flow field of axial turbine. The code was validated against existing Hannover turbine experimental data. Numerical data showed good agreement with measured data. Finally, the effect of geometry changes, focusing on blade lean, twist and bow, on the Avon turbine blade performance, was analyzed. Results show that twisted blade affects performance significantly. Leaned and bowed blade has minor effect on performance.


Author(s):  
Yunchao Yang ◽  
Alexis Lefebvre ◽  
Ge-Cheng Zha ◽  
Qing-Feng Liu ◽  
Jun Fan ◽  
...  

This paper presents a numerical methodology and simulation for three-dimensional transonic flow in Safety Relief Valves. Simulation of safety relief valve flows is very challenging due to complex flow paths, high pressure variation, supersonic flow with shock and expansion waves, boundary layers, etc. The 3D unsteady Reynolds averaged Navier-Stokes (URANS) equations with one-equation Spalart-Allmaras turbulence model is used. A fifth order WENO scheme for the inviscid flux and a second order central differencing for the viscous terms are employed to discretize the Navier-Stokes equations. The low diffusion E-CUSP scheme used as the approximate Riemann solver suggested by Zha et al. is utilized with the WENO scheme to evaluate the inviscid fluxes. Implicit time marching method with 2nd order temporal accuracy using Gauss-Seidel line relaxation is employed to achieve a fast convergence rate. Parallel computing is implemented to save wall clock simulation time. The valve flows with air under different inlet pressures and temperatures are successfully simulated for the full geometry with all the fine leakage channels. A 3D mesh topology is generated for the complex geometry. Detailed simulations of air flow are accomplished with inlet gauge pressure 0.5MPa and 2.1MPa. The simulated air mass flow rate agrees excellently with the experimental results with an error of 0.26% for the inlet pressure of 0.5Mpa, and an error of 2.5% for the inlet pressure of 2.1MPa. The shock waves and expansion waves downstream of the orifice are very well resolved.


2003 ◽  
Vol 125 (6) ◽  
pp. 1033-1042 ◽  
Author(s):  
Fang Yan ◽  
Bakhtier Farouk

A numerical study was conducted to predict the dynamics of gas/liquid flows in a partially filled cylinder undergoing moderate to rapid rotation. Two specific problems were considered: spinup from rest of a partially filled circular container and the steady flow field in a partially filled rotating circular cylinder with an overrotating lid. Numerical solutions of the time-dependent axisymmetric Navier-Stokes equations were obtained by using a homogeneous multiphase model. The evolution of the free surface along with the flow fields in both the gas and liquid phases are predicted. The computed results were compared with available experimental data. Details of flow field structures are examined by studying the numerical solutions. Radial profiles of axial and azimuthal velocities for both the liquid and gas phases are also presented. The model developed can be used for analyzing flows and mixing problems in complex-geometry centrifuges.


2019 ◽  
Author(s):  
Chang Wei Kang ◽  
Xiuqing Xing

Abstract Propeller cavitation is the root cause for noise, hull vibration, as well as erosion on the propeller blades and appendages. Although it is a common practice for marine industry to predict the propeller cavitation by model tests, numerical simulation of propeller performance and the hull-propeller interaction has become feasible with the advancement of high performance computing. In this study, numerical studies of the flow field details around the ship hull with a rotating propeller are performed using Computational Fluid Dynamics (CFD) method by solving the unsteady Reynolds Averaged Navier-Stokes (RANS) equations. The numerical model is developed with commercial software package STAR-CCM+ for the cavitation prediction by considering the hull/propeller interactions and the free surface. Rotating propeller is modeled with an overset mesh, while κ-ω turbulence model is chosen instead of large eddy simulation (LES) or detached eddy simulation (DES) for higher computational efficiency while maintaining satisfied simulation accuracy. Cavitation bubble growth and collapse are estimated using Schnerr-Sauer cavitation model based on Rayleigh-Plesset equation. Simulation results suggest that the model developed in this study is capable to capture the flow field details under the effect of hull-propeller interactions and the free surface. This includes the cavitation emerging position, extinction position, as well as the cavitation patterns on the blade surface at various angular positions. The cavitation induced pressure oscillations on the hull at 1st to 3rd harmonics of Blade Passing Frequency (BPF) are also analyzed. The pressure fluctuation result can provide pressure load information for hull vibration evaluations in future.


2017 ◽  
Vol 67 (5) ◽  
pp. 487
Author(s):  
Yogesh Bhumkar ◽  
Priyank Kumar ◽  
Arnab Roy ◽  
Sudip Das ◽  
Jai Kumar Prasad

<p>A two - dimensional Navier-Stokes solver based on finite volume approach using a boundary-fitted curvilinear structured O-grid has been developed to obtain details of unconfined flow past cylinders at low Reynolds number of 100 and 200 based on diameter. Computations made on a single cylinder with smaller domain adopting the convective boundary conditions captured most of the flow features. This concept of a smaller domain, when used to capture the highly complex flow field around two cylinders of the same diameter placed in tandem at a Reynolds number of 200 showed reasonable results. The details of the flow field around two cylinders of different diameters placed at a typical distance of 3L and Reynolds number of 100 could be well captured adopting smaller domain concept. It is observed that the change in diameter of upstream cylinder strongly influences the overall flow field and the drag of the downstream cylinder.</p>


Author(s):  
Sumanta Acharya ◽  
Mayank Tyagi

Predictions of turbine blade film cooling have traditionally employed Reynolds averaged Navier Stokes (RANS) solvers and two-equation models for turbulence. Evaluation of several versions of such models have revealed that the existing two equation models fail to resolve the anisotropy and the dynamics of the highly complex flow field created by the jet-crossflow interaction. A more accurate prediction of the flow field can be obtained from large eddy simulations (LES) where the dynamics of the larger scales in the flow are directly resolved. In the present paper, such an approach has been used, and results are presented for a row of inclined cylindrical holes at blowing ratios of 0.5 and 1, and a Reynolds number of 11100 and 22200 respectively based on the jet velocity and hole diameter. Comparison of the time-averaged LES predictions with the flow measurements of Lavrich and Chiappetta [1] shows that LES is able to predict the flow field with reasonable accuracy. The unsteady three-dimensional flow field is shown to be dominated by packets of hairpin shaped vortices. The dynamics of the hairpin vortices in the wake region of the injected jet and their influence on the unsteady wall heat transfer is presented. Generation of “hot spots” and their migration on the film-cooled surface is associated with the entrainment induced by the hairpin structures. Several geometric properties of a “mixing interface” around hairpin coherent structures are presented to illustrate and quantify their impact on the entrainment rates and mixing processes in the wake region.


Sign in / Sign up

Export Citation Format

Share Document