scholarly journals 2D Electrochemical Airfoil Machining Process Model

Author(s):  
H. A. Nied ◽  
M. S. Lamphere

A 2D Electro-Chemical Machining (ECM) process model was developed to aid with tooling design and process optimization by simulation of the ECM process. The boundary element method (BEM) was used to numerically solve the field equations of the process model. The electrochemical anodic reaction was furnished by Faraday’s Law, which provided the relationship for the rate of dissolution at the surface of the workpiece as a function of charge transfer. Accordingly, the workpiece shape change and mass of metal removed by the machining process can be determined as a function of time. The process model includes a library of workpiece material and electrolyte combinations for predicting the electrochemical machining behavior, e.g., titanium alloy 6Al-4V and NaCl electrolytes. These metal/electrolyte combinations are of special interest in the aircraft engine industry for manufacturing heat-resistant, rotary components with complex geometry such as airfoil blades. The major features of the numerical computer program are briefly described with a selected example of machining a typical fan blade. Preliminary comparison of the numerical predictions with the nominal airfoil geometry showed good agreement and is discussed below.

2021 ◽  
Vol 11 (4) ◽  
pp. 1425
Author(s):  
Hao Wang ◽  
Jia Liu ◽  
Di Zhu

Electrochemical machining (ECM) is a non-traditional machining technology that is widely used in the manufacturing of key components in the aviation industry. The current efficiency is defined as the ratio of the observed amount of dissolved metal to the theoretical amount predicted from Faraday’s law. In ECM, the current efficiency curve relates the dissolution rate of the anode material and the current density. Accurate measurement of the current efficiency curve is the basis for anode shape prediction and cathode tool design. However, in conventional measurement methods, the phenomenon of edge stray corrosion introduces significant measurement errors. Improving the current efficiency is thus a challenging task for any electrophysical or electrochemical machining process. To improve the measurement accuracy, this paper proposes a current efficiency curve measurement with a casing-type anode. In the proposed measurement method, the anode is designed in two parts: the mandril and the casing. The edge stray corrosion effect is mainly concentrated on the casing, and only the current distribution on the mandril is considered in the calculation of current efficiency. The measurement simulations of the conventional and the proposed methods were carried out. The simulation results show that the casing-type method significantly improves the accuracy of current efficiency measurements, and the current efficiency curve of 304SS was obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
K. G. Saravanan ◽  
R. Prabu ◽  
A. R. Venkataramanan ◽  
Eden Tekle Beyessa

Electrochemical machining is a nonconventional machining process in which the metal removal is achieved by the electricity and chemical solution known as an electrolyte. It is the reverse electrolysis process where the application of electricity facilitates the current travel in between anode and cathode. The mechanism of the ion movement is similar to the electrolysis process. Electrochemical machining (ECM) is a type of advanced machining process which employs electricity to perform the machining process on the workpiece. It is also known as a reverse electroplating process where metal removal is achieved instead of metal deposition on the metal surface. There are various parameters that affect the metal removal process in the ECM process, such as electrolyte, power supply, workpiece material, and tool material. The electrolyte is one of the key factors impacting the machining rate, surface finish, and reliability of the produced parts. In this project, a brief study is carried out regarding the electrochemical process and the electrolytes where the properties, functions, merits, and demerits are evaluated. The impact of the various electrolytes and their suitability for machining of various metals is also discussed. The findings of the effect produced by using the mixture of the electrolyte in the electrochemical machining process are discussed in this project. The effects of the complexing agents on the electrolyte and the electrochemical process as a whole are also reviewed.


2009 ◽  
Vol 69-70 ◽  
pp. 446-450 ◽  
Author(s):  
Ding Hua Zhang ◽  
Ying Zhang ◽  
Bao Hai Wu

Due to different datum position and inevitable distortion from the linear friction welding process, the nominal CAD model from the design stage is no longer suitable for the use of the final NC machining, and that is the main problem for precisely machining complex blisk. In this paper, an adaptive machining approach based on adaptive process model for high precision manufacturing of blisk is proposed and developed. Comparing the nominal model with the inspection result, adaptive process model is reconstructed to describe workpiece localization, allowance distribution and composite error compensation for NC machining of blisk accurately. Firstly, the transformation matrix for allowance optimization is searched fleetly by genetic algorithm with constraint conditions. Secondly, using the cross-section curve blending and deformation compensation method, adaptive model for shape distortion is constructed to solve the part-to-part variation machining problem and to realize precision machining for complex geometry blisk. Finally, based on the adaptive process model, tool paths used for the last NC machining process can then be adaptively generated to implement the different processes work. Example shows that the adaptive machining technology of blisk is feasible and the result is of high precision and efficiency.


Author(s):  
David B. Stofesky

Electrochemical Machining (ECM) has been widely used as a non-traditional three dimensional machining process for a variety of industrial applications. Electrochemical processing permits material removal of metals as diverse as aluminum, brass, tool steels, stainless steels, and titanium. Using cathodic tooling, a conductive electrolyte flowing through the electrode gap, controllable power source, and Faraday’s Law, predictable volumes of metal can be removed from the anodic substrate. Faraday’s Law states that the rate of material removal is proportional to the process current and application time, while Ohm’s Law states that current is inversely proportional to the impedance of the (electrochemical) circuit. MicroECM™ is an application of the ECM process that involves the removal of miniscule volumes of material from anodic substrates while holding micron level dimensional tolerances. This paper describes the process, its requirements, and typical applications for microECM™.


1996 ◽  
Vol 118 (4) ◽  
pp. 490-498 ◽  
Author(s):  
J. Kozak ◽  
K. P. Rajurkar ◽  
R. Balkrishna

Jet Electrochemical Machining (ECJM) employs a jet of electrolyte for anodic dissolution of workpiece material. ECJM is extensively used for drilling small cooling holes in aircraft turbine blades and for producing maskless patterns for microelectronics parts. ECJM process drills small diameter holes and complex shape holes without the use of a profile electrode. One of the most significant problems facing ECJM user industries is the precise control of the process. A theoretical analysis of the process and a corresponding model are required for the development of an appropriate control system. This paper presents a mathematical model for determining the relationship between the machining rate and working conditions (electrolyte jet flow velocity, jet length, electrolyte properties, and voltage) of ECJM. This model describes a distribution of electric field and the effect of change of conductivity of electrolyte (caused by heating) on the process performance. A maximum dissolution rate is determined from the allowable increase of electrolyte temperature. Experimental verification of theoretical results is also presented.


2021 ◽  
Vol 11 (11) ◽  
pp. 4743
Author(s):  
Fernando Cepero-Mejias ◽  
Nicolas Duboust ◽  
Vaibhav A. Phadnis ◽  
Kevin Kerrigan ◽  
Jose L. Curiel-Sosa

Nowadays, the development of robust finite element models is vital to research cost-effectively the optimal cutting parameters of a composite machining process. However, various factors, such as the high computational cost or the complicated nature of the interaction between the workpiece and the cutting tool significantly hinder the modelling of these types of processes. For these reasons, the numerical study of common machining operations, especially in composite machining, is still minimal. This paper presents a novel approach comprising a mixed multidirectional composite damage mode with composite edge trimming operation. An ingenious finite element framework which infer the cutting edge tool wear assessing the incremental change of the machining forces is developed. This information is essential to replace tool inserts before the tool wear could cause severe damage in the machined parts. Two unidirectional carbon fibre specimens with fibre orientations of 45∘ and 90∘ manufactured by pre-preg layup and cured in an autoclave were tested. Excellent machining force predictions were obtained with errors below 10% from the experimental trials. A consistent 2D FE composite damage model previously performed in composite machining was implemented to mimic the material failure during the machining process. The simulation of the spring back effect was shown to notably increase the accuracy of the numerical predictions in comparison to similar investigations. Global cutting forces simulated were analysed together with the cutting tool tooth forces to extract interesting conclusions regarding the forces received by the spindle axis and the cutting tool tooth, respectively. In general terms, vertical and normal forces steadily increase with tool wear, while tangential to the cutting tool, tooth and horizontal machining forces do not undergo a notable variation.


2014 ◽  
Vol 1025-1026 ◽  
pp. 628-632 ◽  
Author(s):  
Mohammad Zulafif Rahim ◽  
Song Lin Ding ◽  
John Mo

Electrical discharge grinding (EDG) is an advanced machining process and can be utilised to fabricate complex geometry of PCD tools. However, the PCD removal mechanism in this process is complicated. This study was carried out to understand the difference in PCD surface structure with difference EDG polarities. The study revealed that the finishing process with negative polarity is the reason for the porous structure on the surface. Further analysis on the chemical element and carbon structure were implemented as the morphological examination of the surface.


2007 ◽  
Vol 40 (18) ◽  
pp. 475-480
Author(s):  
Laurentiu SLATINEANU ◽  
Oana DODUN ◽  
Loredana SANTO ◽  
Margareta COTEATA ◽  
Adriana MUNTEANU

2013 ◽  
Vol 770 ◽  
pp. 361-365
Author(s):  
Yu Peng Xin ◽  
Xi Tian Tian ◽  
Li Jiang Huang ◽  
Jun Hao Geng

In order to improve the efficiency of NC machining programming, and realize the rapid establishment of blank model or middle blank model, a geometrical modeling method of process driven by typical process model was put forward. This method is based on the typical process for the establishment of typical process model, to establish a mapping between modeling operation and machining process ontology, and format model mapping rules. In the process geometrical modeling of the high similarity parts, by calling the typical process model mapping rules, can generate process models automatically. A enterprise disc type parts typical process as an example is used to verify the proposed method.


Sign in / Sign up

Export Citation Format

Share Document