Optimal Synthesis of Compliant Mechanisms to Satisfy Kinematic and Structural Requirements: Preliminary Results

Author(s):  
Mary I. Frecker ◽  
Noboru Kikuchi ◽  
Sridhar Kota

Abstract Compliant mechanism synthesis is an automated design procedure which allows the designer to systematically generate the optimal structural form for a particular set of loading and motion requirements. The synthesis method presented here solves a particular class of design problems, where the compliant mechanism is required to be both flexible to meet motion requirements, and stiff to withstand external loads. A two-part problem formulation is proposed using mutual and strain energies, whereby the conflicting design objectives of required flexibility and stiffness are handled via multi-criteria optimization. The resulting compliant mechanism topologies satisfy both kinematic and structural requirements. The problem formulation is implemented using a truss ground structure and SLP algorithm. Several design examples are presented to illustrate this method.

Author(s):  
A. Midha ◽  
I. Her ◽  
B. A. Salamon

Abstract A broader research proposal seeks to systematically combine large-deflection mechanics of flexible elements with important kinematic considerations, in yielding compliant mechanisms which perform useful tasks. Specifically, the proposed design methodology will address the following needs: development of the necessary nomenclature, classification and definitions, and identification of the kinematic properties; categorization of mechanism synthesis types, both structurally as well as by function; development of efficient computational techniques for design; consideration of materials; and application and validation. Contained herein, in particular, is an introduction to the state-of-the-art in compliant mechanisms, and the development of an accurate chain calculation algorithm for use in the analysis of a large-deflection, cantilevered elastica. Shooting methods, which permit specification of additional boundary conditions on the elastica, as well as compliant mechanism examples are presented in a companion paper.


2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Punit Bandi ◽  
James P. Schmiedeler ◽  
Andrés Tovar

This work presents a novel method for designing crashworthy structures with controlled energy absorption based on the use of compliant mechanisms. This method helps in introducing flexibility at desired locations within the structure, which in turn reduces the peak force at the expense of a reasonable increase in intrusion. For this purpose, the given design domain is divided into two subdomains: flexible (FSD) and stiff (SSD) subdomains. The design in the flexible subdomain is governed by the compliant mechanism synthesis approach for which output ports are defined at the interface between the two subdomains. These output ports aid in defining potential load paths and help the user make better use of a given design space. The design in the stiff subdomain is governed by the principle of a fully stressed design for which material is distributed to achieve uniform energy distribution within the design space. Together, FSD and SSD provide for a combination of flexibility and stiffness in the structure, which is desirable for most crash applications.


1993 ◽  
Vol 115 (3) ◽  
pp. 364-369 ◽  
Author(s):  
R. C. Redfield

This work develops the conceptual design of an inertial velocity sensor drawing upon the impedance synthesis method in Part I of this paper. Specifications are frequency based impedances and resulting designs are configurations of dynamic energy storing and dissipation elements. The design procedure can be extended to a class of systems design problems where frequency response performance is of primary importance. A key to this work is that the method designs systems from scratch; initial configurations are unknown. As a theme example to demonstrate the utility of the method for conceptual design, constrained and unconstrained inertial velocity sensors are configured based on input-output performance requirements. Such sensors find application in many motion control problems including mechanism and manipulator control, and vibration isolation control. The design methodology generates a number of different sensors that can measure absolute velocity for some or all ranges of frequency.


Author(s):  
Ashok Midha ◽  
Yuvaraj Annamalai ◽  
Sharath K. Kolachalam

Compliant mechanisms are defined as mechanisms that gain some, or all of their mobility from the flexibility of their members. Suitable use of pseudo-rigid-body models for compliant segments, and relying on the state-of-the-art knowledge of rigid-body mechanism synthesis types, greatly simplifies the design of compliant mechanisms. Assuming a pseudo-rigid-body four-bar mechanism, with one to four torsional springs located at the revolute joints to represent mechanism compliance, a simple, heuristic approach is provided to develop various compliant mechanism types. The synthesis with compliance method is used for three, four and five precision positions, with consideration of one to four torsional springs, to systematically develop design tables for standard mechanism synthesis types. These tables appropriately reflect the mechanism compliance by specification of either energy or torque. Examples are presented to demonstrate the use of weakly or strongly coupled sets of kinematic and energy/torque equations, as well as different compliant mechanism types in obtaining solutions.


Author(s):  
Hong Zhou ◽  
Kwun-Lon Ting

A three-dimensional wide curve is a spatial curve with variable cross sections. This paper introduces a geometric synthesis method for spatial compliant mechanisms by using three-dimensional wide curves. In this paper, every connection in a spatial compliant mechanism is represented by a three-dimensional wide curve and the whole spatial compliant mechanism is modeled as a set of connected three-dimensional wide curves. The geometric synthesis of a spatial compliant mechanism is considered as the generation and optimal selection of control parameters of the corresponding three-dimensional parametric wide curves. The deformation and performance of spatial compliant mechanisms are evaluated by the isoparametric degenerate-continuum nonlinear finite element procedure. The problem-dependent objectives are optimized and the practical constraints are imposed during the optimization process. The optimization problem is solved by the MATLAB constrained nonlinear programming algorithm. The effectiveness of the proposed geometric procedures is verified by the demonstrated examples.


Author(s):  
Ashok Midha ◽  
Sharath K. Kolachalam ◽  
Yuvaraj Annamalai

Compliant mechanisms, unlike rigid-body mechanisms, are devices that derive some or all of their mobility due to the deformation of their flexible members. The knowledge of existing rigid-body mechanism synthesis techniques is very useful in designing compliant mechanisms. In rigid-body mechanisms, a four-bar is treated as the basic mechanism that can transfer motion, force or energy. In this paper, a compliant single-strip continuum is introduced as the basic compliant mechanism that can transfer motion, force or energy. A classification of compliant mechanisms is presented herein. A methodology for compliant single-strip mechanism synthesis for energy, force or torque specifications is developed in this research as our second objective. The synthesis types, the governing equations, and the variables involved are enumerated.


Author(s):  
Hongqing Vincent Wang ◽  
David W. Rosen

An automated design synthesis method is developed to design an airfoil with a reconfigurable shape, which can change from one type of geometry to another. A design synthesis method using unit truss approach and particle swarm optimization is presented. In the unit truss approach, unit truss is used as a new unit cell for mechanics analysis of cellular structures, including lightweight structures and compliant mechanisms. Using unit truss approach, axial forces, bending, torsion, nonlinearity, and buckling in structures can be considered. It provides good analysis accuracy and computational efficiency. A synthesis method using unit truss approach integrated with particle swarm optimization is developed to systematically design adaptive cellular structures, in particular, compliant mechanisms discussed in this paper. As an example study, the authors realize the design synthesis of a compliant mechanism that enables an entire closed-loop airfoil profile to change shape from NACA 23015 to FX60-126 for the desired morphing wing. The nonlinear behavior of compliant mechanisms under large deformation is considered. The resulting design is validated by testing its robustness and considering nonlinearity.


Author(s):  
Nilesh D. Mankame ◽  
Anupam Saxena

We use non-linear finite element simulations to study the convergence behavior of the honeycomb or hex cell design discretization for optimization-based synthesis of compliant mechanisms in this paper. Adjacent elements share exactly one common edge in the hex cell discretization, unlike the square cell discretization in which adjacent elements can be connected by a single node. As the single node connections in bilinear quadrilateral plane stress elements allow strain-free relative rotations, compliant mechanism designs obtained from square cell discretizations with these elements often contain elements with single node connections or point flexures. Point flexures are sites of lumped compliance, and as such, are undesirable as they lead to compliant mechanisms designs which deviate from the ideal of distributed compliance. The hex cell design discretization circumvents the problem of point flexures without any additional computational expense (e.g. filtering, extra constraints, etc.) by exploiting the geometry of the discretization. In this work we compare the elastic response of a group of four cells in which two adjacent cells have the least connectivity in both: the square and the hex discretizations. Simulations show that the hex cell discretization leads to a more accurate modeling of the displacement, stress and strain energy fields in the vicinity of the least connectivity regions than the square cell discretization. Therefore, the hex cell discretization does not suffer from stress singularities that plague the square cell discretization. These properties ensure that continuous optimization-based compliant mechanism synthesis procedures that use the hex cell discretization, exhibit a faster and more stable convergence to designs that can be readily manufactured than those that use the square cell discretization.


Author(s):  
Deepak S. Ramrkahyani ◽  
Mary I. Frecker ◽  
George A. Lesieutre

The design obtained from a topology optimization problem can largely depend on the type of the ground structure used. A new type of ground structure containing hinged beam elements is described in this paper that reduces the dependence of the optimal design on the ground structure. Apart from the beam and truss elements that have traditionally been used, two new types of elements are introduced: 1) a beam with a hinge on one end and a solid connection on the other end, 2) beam element with hinges on both ends. These elements are particularly useful when applied to a compliant mechanism design using a truss/beam type ground structure. A couple of compliant mechanism problems are solved to demonstrate the effectiveness of these elements.


Robotica ◽  
2019 ◽  
Vol 37 (08) ◽  
pp. 1383-1400 ◽  
Author(s):  
Chih-Hsing Liu ◽  
Chen-Hua Chiu ◽  
Mao-Cheng Hsu ◽  
Yang Chen ◽  
Yen-Pin Chiang

SummaryThis study presents an optimal design procedure including topology optimization and size–shape optimization methods to maximize mechanical advantage (which is defined as the ratio of output force to input force) of the synthesized compliant mechanism. The formulation of the topology optimization method to design compliant mechanisms with multiple output ports is presented. The topology-optimized result is used as the initial design domain for subsequent size–shape optimization process. The proposed optimal design procedure is used to synthesize an adaptive compliant gripper with high mechanical advantage. The proposed gripper is a monolithic two-finger design and is prototyped using silicon rubber. Experimental studies including mechanical advantage test, object grasping test, and payload test are carried out to evaluate the design. The results show that the proposed adaptive complaint gripper assembly can effectively grasp irregular objects up to 2.7 kg.


Sign in / Sign up

Export Citation Format

Share Document