The Reduction of Low Frequency Gas Turbine Exhaust Noise: A Case Study

Author(s):  
William C. Lucas ◽  
George F. Hessler

A well reported, industry-wide problem with simple cycle peaking gas turbines installed near residences is excessive low frequency airborne noise, sometimes termed “infrasound.” If the noise level is high enough, it can cause perceptible vibration of windows and frame buildings, and provoke an adverse response from the community. Such a situation recently occurred after construction of a four unit GT 11N1 peaking station. A team of specialists and outside consultants was formed to investigate the problem, and a development program found that a thick absorber could be effective against infrasound. This led to the design of a thick panel absorber which was installed at the rear of a 90 degree turn in the exhaust system. Field testing verified that the low frequency noise from the turbine exhaust was reduced by 5.9 and 6.7 dB in the 31.5 and 63 Hz octave bands respectively, and by 5.5 dB(C) overall.

1990 ◽  
Vol 112 (1) ◽  
pp. 80-85
Author(s):  
F. Fleischer ◽  
C. Koerner ◽  
J. Mann

Following repeated cases of damage caused to exhaust silencers located directly beyond gas turbine diffusers, this paper reports on investigations carried out to determine possible remedies. In all instances, an uneven exhaust gas flow distribution was found. The company’s innovative approach to the problem involved constructing a scale model of a complete gas turbine exhaust system and using it for flow simulation purposes. It was established for the first time that, subject to certain conditions, the results of tests conducted on a model can be applied to the actual turbine exhaust system. It is shown that when an unfavorable duct arrangement might produce an uneven exhaust flow, scale models are useful in the development of suitable flow-distributing devices.


Author(s):  
Marv Weiss

Gas turbine exhaust heat recovery systems have demonstrated the ability to attenuate acoustic energy without the benefit of sound absorbing materials. This paper describes the mechanisms utilized by heat recovery steam generators (HRSG) and by regenerators to reduce exhaust noise. Included is a semi-empirical method by which the attenuation of an HRSG can be predicted. Attenuations exhibited by the heat recovery equipment are in excess of 10 dB.


Author(s):  
L. Itter ◽  
M. Cagna ◽  
A. Wiedermann ◽  
M. Boehle

Today’s market for gas turbines is getting bigger since there is a huge demand for power generation and mechanical drive applications. To meet the market requirements gas turbine components have to be very efficient to play a leading role. In order to accelerate component improvement the introduction of integrated CAx Technology is a key to achieve a less time-consuming and therefore cheaper design. This paper will describe a procedure which can be used to design an exhaust system for gas turbines with hot-end drive. It shows how to combine various technologies like CAD and CFD and make them work together rapidly. Firstly a 1D design is done and compared with a performance chart of conventional use. Then, a 2D parametric study of a 90 degree bend will be performed by the combination of a CAD-system and a CFD-solver. Thirdly a full 3D-simulation of the entire exhaust will be performed with a calibrated solver. Different complex geometry modifications are applied and their influence on the performance of the exhaust will be discussed.


Author(s):  
Friedrich Fleischer ◽  
Christian Koerner ◽  
Juergen Mann

Following repeated cases of damage caused to exhaust silencers located directly beyond gas turbine diffusers, this paper reports on investigations carried out to determine possible remedies. In all instances, an uneven exhaust gas flow distribution was found to be present. The company’s innovative approach to the problem involved constructing a scale model of a complete gas turbine exhaust system and using it for flow simulation purposes. It was established for the first time that, subject to certain conditions, the results of tests conducted on a model can be applied to the actual turbine exhaust system. It is shown that when an unfavourable duct arrangement might produce an uneven exhaust flow, scale models are useful in the development of suitable flow-distributing devices.


Author(s):  
Jie Gao ◽  
Feng Lin ◽  
Xiying Niu ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
...  

The marine gas turbine exhaust volute is an important component that connects a power turbine and an exhaust system, and it is of great importance to the overall performance of the gas turbine. Gases exhausted from the power turbine are expanded and deflected 90 degrees in the exhaust volute, and then discharge radially into the exhaust system. The flows in the power turbine and the nonaxisymmetric exhaust volute are closely coupled and inherently unsteady. The flow interactions between the power turbine and the exhaust volute have a significant influence on the shrouded rotor blade aerodynamic forces. However, the interactions have not been taken into account properly in current power turbine design approaches. The present study aims to investigate the flow interactions between the last stage of a shrouded power turbine and the nonaxisymmetric exhaust volute with struts. Special attention is given to the coupled aerodynamics and pressure response studies. This work was carried out using coupled computational fluid dynamics (CFD) simulations with the computational domain including a stator vane, 76 shrouded rotor blades, 9 struts and an exhaust volute. Three-dimensional (3D) unsteady and steady Reynolds-averaged Navier-Stokes (RANS) solutions in conjunction with a Spalart-Allmaras turbulence model are utilized to investigate the aerodynamic characteristics of shrouded rotors and an exhaust volute using a commercial CFD software ANSYS Fluent 14.0. The asymmetric flow fields are analyzed in detail; as are the unsteady pressures on the shrouded rotor blade. In addition, the unsteady total pressures at the volute outlet is also analyzed without consideration of the upstream turbine effects. Results show that the flows in the nonaxisymmetric exhaust volute are inherently unsteady; for the studied turbine-exhaust configuration the nonaxisymmetric back-pressure induced by the downstream volute leads to the local flow varying for each shrouded blade and low frequency fluctuations in the blade force. Detailed results from this investigation are presented and discussed in this paper.


2014 ◽  
Vol 986-987 ◽  
pp. 810-813
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.


Author(s):  
Manfred Sieminski ◽  
Manfred Schneider

Low Frequency Noise at Gas Turbines A natural gas compressor station that was equipped with Hispano Suiza Turbines THM 1202 emitted high intensity noise between 20 Hz and 40 Hz, causing window vibrations and standing waves within the living rooms of a nearby residential area. Since additional sound attenuation by increasing the volume of the exhaust silencers was impossible, further investigations were carried out to explain the mechanism of this low frequency noise emission. By changing the flame pattern inside the combustion chambers of the turbines it was possible to achieve a remarkable reduction at 31.5 Hz amounting to 15 dB. The investigation procedure leading to the final results will be the subject of this presentation.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


1998 ◽  
Vol 120 (07) ◽  
pp. 72-73 ◽  
Author(s):  
Michael Valent

This article reviews that twenty-first century passengers on the Royal Caribbean International and Celebrity Cruises are set to make history in style. Up to six of Royal Caribbean’s Voyager- and Millennium-class vessels will be the first cruise ships ever powered by General Electric’s gas turbines. In addition to reducing engine-room noise and vibration and cutting emissions, this propulsion system—a departure from the traditional diesel engine—will make it possible for ships to set sail with a reduced maintenance crew and smaller parts inventory. Royal Caribbean International currently operates a fleet of 12 ships. In the Royal Caribbean application, the GE gas turbine will be used to drive generators that will provide electricity to propeller motors. The steam turbine will recover heat from the gas turbine exhaust for other uses. This combined gas turbine and steam turbine integrated electric drive system represents a departure from diesel engines in more than one respect.


Procedia CIRP ◽  
2019 ◽  
Vol 83 ◽  
pp. 630-635 ◽  
Author(s):  
Fei Zhao ◽  
Liang Chen ◽  
Tangbin Xia ◽  
Zikun Ye ◽  
Yu Zheng

Sign in / Sign up

Export Citation Format

Share Document