scholarly journals Numerical and Experimental Investigation of a Rich Quench Lean Combustor Sector

Author(s):  
Johannes W. Koopman ◽  
Peter Griebel ◽  
Christoph Hassa

The flow in a three sector model, representing a segment of an annular rich quench lean combustor for an aeroengine is investigated. Detailed knowledge of flow, temperature and species concentration distributions is of decisive importance to control the NOx formation, essential to the RQL concept. Velocities, temperatures and species concentrations are measured. They are partly used to aquire data on the inlet boundaries in the numerical calculation and partly used to compare with the numerical results. The calculation reveals many details which are not accesable in the experiment. It also shows the effects of the specific inlet dataset. Experimental data and numerical results furnish complementary information.

1985 ◽  
Vol 50 (11) ◽  
pp. 2381-2395
Author(s):  
Alena Brunovská ◽  
Ján Buriánek ◽  
Ján Ilavský ◽  
Ján Valtýni

The diffusion and the shell progressive models of deactivation caused by irreversible chemisorption of a catalytic poison are presented for a single catalyst pellet. The method for solution of the model equations is proposed. The numerical results are compared with experimental data obtained by measuring concentration and temperature changes due to thiophene poisoning in benzene hydrogenation over a nickel-alumina catalyst.


Author(s):  
Isoharu Nishiguchi ◽  
Fumitoshi Sakata ◽  
Seiichi Hamada

A method to investigate pipe wall thinning using guided waves has been developed for pipes in thermal power generation facilities. In this paper, the reflection coefficient and the transmission coefficient are derived for the torsional waves which propagate along a pipe and a simplified method to predict the waveform is proposed. The predictions of the waveforms by the FEM and a simplified method based on the reflection of torsional waves are also examined by comparing with experimental data.


2012 ◽  
Vol 152-154 ◽  
pp. 1313-1318
Author(s):  
Tao Lu ◽  
Su Mei Liu ◽  
Ping Wang ◽  
Wei Yyu Zhu

Velocity fluctuations in a mixing T-junction were simulated in FLUENT using large-eddy simulation (LES) turbulent flow model with sub-grid scale (SGS) Smagorinsky–Lilly (SL) model. The normalized mean and root mean square velocities are used to describe the time-averaged velocities and the velocities fluctuation intensities. Comparison of the numerical results with experimental data shows that the LES model is valid for predicting the flow of mixing in a T-junction junction. The numerical results reveal the velocity distributions and fluctuations are basically symmetrical and the fluctuation at the upstream of the downstream of the main duct is stronger than that at the downstream of the downstream of the main duct.


1971 ◽  
Vol 47 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. A. Despard ◽  
J. A. Miller

The results of an experimental investigation of separation in oscillating laminar boundary layers is reported. Instantaneous velocity profiles obtained with multiple hot-wire anemometer arrays reveal that the onset of wake formation is preceded by the initial vanishing of shear at the wall, or reverse flow, throughout the entire cycle of oscillation. Correlation of the experimental data indicates that the frequency, Reynolds number and dynamic history of the boundary layer are the dominant parameters and oscillation amplitude has a negligible effect on separation-point displacement.


Author(s):  
H. T. Banks ◽  
C. A. Smith

Abstract In this presentation we will report on joint efforts with D.J. Inman and his colleagues at MSL, SUNY at Buffalo, to develop viable models for the analysis and control of elastic structures exhibiting coupled torsional and flexural vibrations. A model for coupled torsion and bending is developed which incorporates Kelvin Voigt damping and warping. Approximation techniques are introduced and preliminary numerical results are discussed. Experimental data is presented and used to test our computational results.


2002 ◽  
Vol 4 (1) ◽  
pp. 21-38 ◽  
Author(s):  
C. E. Kelly ◽  
R. D. Leek ◽  
H. M. Byrne ◽  
S. M. Cox ◽  
A. L. Harris ◽  
...  

In this paper a mathematical model that describes macrophage infiltration into avascular tumours is presented. The qualitative accuracy of the model is assessed by comparing numerical results with independent experimental data that describe the infiltration of macrophages into two types of spheroids: chemoattractant-producing (hepa-1) and chemoattractant-deficient (or C4) spheroids. A combination of analytical and numerical techniques are used to show how the infiltration pattern depends on the motility mechanisms involved (i.e. random motion and chemotaxis) and to explain the observed differences in macrophage infiltration into the hepa-1 and C4 spheroids. Model predictions are generated to show how the spheroid's size and spatial structure and the ability of its constituent cells influence macrophage infiltration. For example, chemoattractant-producing spheroids are shown to recruit larger numbers of macrophages than chemoattractant-deficient spheroids of the same size and spatial structure. The biological implications of these results are also discussed briefly.


Author(s):  
Johanna Banck-Burgess

This chapter challenges traditional views on Iron Age dress. Recent research has greatly enhanced our understanding of how textiles were manufactured in Iron Age Europe. The variety of qualities, textures, techniques, raw materials, colours, and cuts give insights into the detailed knowledge of the craftspeople involved. Textiles used for dress, blankets, or furniture fittings were appreciated not only for their appearance, but also for the quality of the work. In everyday life, their optical qualities were used to express and signal gender, social roles and status, while the labour expended on textiles found in wealthy burials underlines both the status of the deceased and the extent of conspicuous consumption in funerary rituals—for instance, for wrapping grave furniture and goods. The chapter also looks at experimental data showing how labour-intensive textile production was, and the types of clothing and accessories found in different archaeological contexts or depicted in visual representations.


2001 ◽  
Author(s):  
Hajime Ishii ◽  
Yuichi Goto ◽  
Matsuo Odaka ◽  
Andrei Kazakov ◽  
David E. Foster

2020 ◽  
pp. 22-31
Author(s):  
Anton Kurakin ◽  

Systems operation which include rotating elements in certain cases is associated with occurrence of contact between the rotating parts (rotor) and the stationary parts (stator). There were cases then rotor-stator interaction led to damage or to complete unit destruction. For this reason, rotor-stator interaction is one of the main problem of rotor systems exploitation. The main aim of the work is to gather detail data about effect of friction on vibrational characteristics of rotor system during rotor-stator interaction. In this article the experimental investigation method and experimental investigation of dynamic behavior of rotor during rotor-stator interaction is presented. The analysis of experimental data obtained during interaction between steel rotor and stator made of aluminum, bronze and PTFE is presented. All results with rotor-stator contact and without were compared by using Campbell diagrams, orbits and frequency responses. Analysis of experimental data shows that friction has strong effect on vibrational characteristics of rotor system during rotor-stator interaction. According to friction ratio three kinds of vibrational characteristics of rotor system are distinguished: forward slipping if friction coefficient is small, backward rolling if friction coefficient is big, vibratory impact motion if friction coefficient has intermediate value. Created experimental method and gathered data about rotor dynamics during rotor-stator contact can be used for verification and tuning of mathematical models.


Sign in / Sign up

Export Citation Format

Share Document