Effects of Cylinder Diameters, Reynolds Number and Distance Between Two-Tandem Cylinders on the Wake Profile and Turbulence Intensity

Author(s):  
Amin Rahimzadeh ◽  
Majid Malek Jafarian ◽  
Amir Khoshnevis

A series of experimental and numerical investigations on two tandem cylinders wake have been studied. The velocity profile and turbulence intensity have been acquired by a single one dimensional Hot Wire anemometer. The two cylinders were mounted in a tandem manner in the horizontal mid plane of the working section. The effect of the upstream cylinder diameter, Reynolds number and the distance between the cylinders on the wake profile and turbulence intensity on the downstream cylinder was investigated, while the Reynolds number ranged between 1.5× ⟦10⟧ ^4 ∼ 3× ⟦10⟧ ^4. The upstream cylinder diameter (d) was 10, 20 and 25 mm, while the downstream cylinder diameter (D) was 25 mm, corresponding to d/D ranging from 0.4 ∼1.0. The spacing ratio L/d (where L is the distance between the upstream cylinder center and the leading stagnation point of the downstream cylinder) was 2 and 5.5, covering different flow regimes. Observations indicate that two symmetric turbulence intensity peak will occur at mean velocity gradient area. Turbulence area will increase in width for both L/d = 2 and 5.5 as increasing distance from the cylinder (x/D) and decreasing free stream velocity. But totally the range of the turbulence area for L/d = 5.5 is greater than L/d = 2. The wake profiles show that the velocity defect increases as increasing upstream cylinder’s diameter for L/d = 5.5. While this order cannot be accessed for L/d = 2. It is observed that sudden and unusual velocity defect happened for L/d = 2 and d/D = 0.8 cases, which means that the most velocity defect is running on. Also, numerical solution results of velocity profile have been compared with the mentioned experimental results at station 4 and velocity of 10 m/s for both L/d = 2 and 5.5. Results shows a little difference because of using one-dimensional Hot-wire.

1986 ◽  
Vol 108 (2) ◽  
pp. 180-184 ◽  
Author(s):  
M. Moriya ◽  
H. Sakamoto

The flow around two circular cylinders in tandem arrangement in uniform flow where the upstream cylinder is forcibly vibrated in direction normal to the approach flow was experimentally studied at Reynolds number of 6.54 × 104. The spacing ratio 1/d (1: distance between centers of cylinders, d: diameter of circular cylinders) and the ratio of amplitude to cylinder diameter a/d (a: amplitude of transverse vibration of cylinder) were varied from 2 to 6 and 0 to 0.029 respectively. The effects of the vibration of the upstream cylinder on the downstream cylinder were discussed. In particular, two distinct “lock-in” regions were observed when the upstream cylinder was vibrated with a spacing ratio of 1/d = 3.0. The cylinder vibration was so effective even for a/d as small as 0.017 to cause two different flow patterns.


Author(s):  
J. R. S. Graveline ◽  
S. A. Sjolander

A single wire, hot-wire, probe is used to examine the airflow in, and in close vicinity to, the shearlayer of a Low-Pressure Turbine (LPT) airfoil. The experiment was performed with varying turbulence intensities (Tu) and Reynolds numbers (ReBx); in this work, Re is based on the cascade inflow velocity and axial chord length. In part 1 of the present study [1], the methodology used to identify the key frequencies in the free shearlayer using a combination of statistical and spectral measures of the airflow was first discussed. Here, the focus is on the effects of ReBx and Tu on the spectral results. The frequencies and location in the shearlayer of the Tollmien-Schlichting (TS) waves and Kelvin-Helmholtz (KH) instabilities are shown to be affected by both Tu and ReBx. Additionally, the KH instabilities are shown to undergo pairing.


2018 ◽  
Vol 851 ◽  
pp. 1-22 ◽  
Author(s):  
L. Djenidi ◽  
K. M. Talluru ◽  
R. A. Antonia

This paper examines the Reynolds number ($Re$) dependence of a zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) which develops over a two-dimensional rough wall with a view to ascertaining whether this type of boundary layer can become independent of $Re$. Measurements are made using hot-wire anemometry over a rough wall that consists of a periodic arrangement of cylindrical rods with a streamwise spacing of eight times the rod diameter. The present results, together with those obtained over a sand-grain roughness at high Reynolds number, indicate that a $Re$-independent state can be achieved at a moderate $Re$. However, it is also found that the mean velocity distributions over different roughness geometries do not collapse when normalised by appropriate velocity and length scales. This lack of collapse is attributed to the difference in the drag coefficient between these geometries. We also show that the collapse of the $U_{\unicode[STIX]{x1D70F}}$-normalised mean velocity defect profiles may not necessarily reflect $Re$-independence. A better indicator of the asymptotic state of $Re$ is the mean velocity defect profile normalised by the free-stream velocity and plotted as a function of $y/\unicode[STIX]{x1D6FF}$, where $y$ is the vertical distance from the wall and $\unicode[STIX]{x1D6FF}$ is the boundary layer thickness. This is well supported by the measurements.


Author(s):  
G. James Van Fossen ◽  
Ronald S. Bunker

Heat transfer measurements have been made in the stagnation region of a flat plate with an elliptical leading edge. The radius of curvature at the stagnation point was similar to that of a first stage turbine vane airfoil used in a large commercial high-bypass turbofan engine. The airfoil was mounted downstream of an arc segment of a dual-annular combustor similar to the type used in an advanced turbine engine. Testing was done in air at atmospheric temperature and at pressures up to 376 kPa to simulate the vane leading edge Reynolds number seen in the engine. Spanwise average stagnation region heat transfer was measured with an electrically heated aluminum strip. Turbulence intensity, length scale and isotropy were measured using standard 2-wire hot wire probes. The combustor contained two annular rows of fuel-air swirlers which were aligned in the radial direction. Both heat transfer and hot wire data were taken at two circumferential positions; one directly downstream of a pair of swirlers and one half way between two pairs of swirlers. Reynolds number based on vane leading edge diameter was varied from 51000 to 160000. The maximum Reynolds number for turbulence measurements was limited to 87000. Turbulence intensity averaged over all test conditions was found to be 31.6%. Average axial, integral length scale was 1.29 cm, which gave a length scale-to-leading edge diameter ratio of 1.08. The turbulence was found to be nearly isotropic with the average ratio of axial to circumferential fluctuating components of 1.15. Heat transfer augmentation above laminar levels was found to vary from 34 to almost 59% depending on the Reynolds number. No effect of circumferential position was found. The heat transfer augmentation was found to be well predicted by a correlation derived from grid generated turbulence.


1976 ◽  
Vol 27 (2) ◽  
pp. 123-142 ◽  
Author(s):  
A K M F Hussain ◽  
V Ramjee

SummaryThe effects of free-stream turbulence and of sinusoidal free-stream pulsations of controlled frequencies and amplitudes on the periodic wake of a circular cylinder are investigated experimentally by employing hot-wire and smoke visualisation techniques. In addition, the effects of cylinder yaw and mild favourable and adverse pressure gradients on the vortex shedding mechanism have been explored.The data relating frequency to mean velocity follow Berger’s relation; this relation is uninfluenced by free-stream turbulence intensities up to 8 per cent. As the longitudinal turbulence intensity increases from 0.3 to 8 per cent, the downstream distance Lp behind the cylinder over which the hot-wire signal is periodic decreases progressively, indicating that the otherwise steady periodic wake interacts non-linearly with the three-dimensional free-stream turbulence and undergoes either transition or rapid diffusion by turbulence, depending on both the Reynolds number and the turbulence intensity. For a given turbulence intensity, Lp decreases also with increasing Reynolds number.The shedding frequency behind a yawed cylinder does not vary as the cosine of the yaw angle ϕ for ϕ < 50°; the signal switches intermittently between periodic and irregular form as the yaw is increased from 0 to 70°. Mild pressure gradients (favourable as well as adverse) do not affect the shedding frequency; this is confirmed by smoke visualisation, which also shows that the pressure gradient changes the longitudinal vortex spacing downstream; the measured frequency is that determined by the local Reynolds number corresponding to the Berger relation.Sinusoidal streamwise pulsations of controlled frequencies, and of amplitudes up to 10 per cent of free-stream velocity, have no effect on the natural shedding frequency; this is confirmed by smoke visualisation of the cylinder wake. However, the wake signal is amplitude-modulated at a frequency equal to the difference between the pulsation frequency and the natural shedding frequency corresponding to the free-stream mean velocity. The vortices are diffused faster in the presence of pulsation. When the pulsation amplitude is increased beyond 20 per cent, the hot-wire signal frequency in the wake equals the driving frequency; the frequency in the wake centre is also that of the pulsation. The effect of free-stream pulsation on the periodic wake is different from that due to longitudinal or transverse cylinder vibration, when lock-in has been observed.It appears that free-stream disturbances – random or periodic – cannot account for the “Tritton jump”.


1993 ◽  
Vol 250 ◽  
pp. 43-68 ◽  
Author(s):  
A. T. Degani ◽  
F. T. Smith ◽  
J. D. A. Walker

The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the cross-stream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.


Author(s):  
Md. Mahbub Alam ◽  
An Ran ◽  
Yu Zhou

This paper presents cross-flow induced response of a both-end-spring-mounted circular cylinder (diameter D) placed in the wake of a rigid circular cylinder of smaller diameter d. The cylinder vibration is constrained to the transverse direction. The cylinder diameter ratio d/D and spacing ratio L/d are varied from 0.2 to 1.0 and 1.0 to 5.5, respectively, where L is the distance between the center of the upstream cylinder to the forward stagnation point of the downstream cylinder. A violent vibration of the cylinder is observed for d/D = 0.2 ∼ 0.8 at L/d = 1.0, for d/D = 0.24 ∼ 0.6 at 1.0 < L/d ≤ 2.5, for d/D = 0.2 ∼ 0.4 at 2.5 < L/d ≤ 3.5, and for d/D = 0.2 at 3.5 < L/d ≤ 5.5, but not for d/D = 1.0. A smaller d/D generates vibration for a longer range of L/d. The violent vibration occurs at a reduced velocity Ur (=U∞/fnD, where U∞ is the free-stream velocity and fn the natural frequency of the cylinder system) beyond the vortex excitation regime (Ur ≥ 8) depending on d/D and L/d. Once the vibration starts to occur, the vibration amplitude increases rapidly with increasing Ur. It is further noted that the flow behind the downstream cylinder is characterized by two predominant frequencies, corresponding to the cylinder vibration frequency and the natural vortex shedding frequency of the cylinder, respectively. While the former persists downstream, the latter vanishes rapidly.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012021
Author(s):  
V V Lemanov ◽  
V I Terekhov ◽  
K A Sharov ◽  
A A Shumeiko

Abstract In this work, the experimental data are compared with the version of the “strong” jet (Re ≫ 1) of the exact Landau-Squire solution. The experiments were performed for a submerged air jet flowing out of a tube with a diameter of D = 3.2 mm and a length of more than 100D at a Reynolds number equal to Re = 436. The initial conditions in the jet are the Poiseuille velocity profile, the level of velocity pulsations is less than 1%. Measurements were carried out using a hot-wire anemometer. It is shown that satisfactory agreement with theory is achieved at distances from the tube starting from x/D = 5.6 and up to the zone of transition to turbulence (x/D > 35). Turbulence along the jet axis will increase from 1% to 2.5%, while in the mixing layers it increases to 4.7%.


2015 ◽  
Author(s):  
Harish Gopalan ◽  
Peifeng Ma ◽  
Haihua Xu ◽  
Ankit Choudhary ◽  
Anis Hussain ◽  
...  

Accurate prediction of hydrodynamic forces on tandem bluff bodies at high Reynolds numbers is of interest in many fields of offshore engineering. The most commonly used turbulence modeling strategy for studying these flows is unsteady Reynolds-averaged Navier-Stokes methods (URANS) due to its speed. However, the accuracy of URANS results are problem dependent and usually poor for bluff bodies flow separation predictions. To overcome this deficiency, two different modeling methods have been considered: (i) large eddy simulation (LES) and (ii) non-linear URANS. LES are accurate and computationally feasible for low to moderate Reynolds number flows. However, the cost of LES makes it infeasible at high Reynolds numbers. On the other hand, non-linear URANS methods are fast like URANS, and its accuracy is comparable to LES for certain flows. It is usually not known in advance if the simulations using non-linear methods are accurate. Hybrid models have been proposed in the literature as an alternative to existing methods. They employ a URANS model in the near-body region and LES in the near and far wake regions. Simulations performed using hybrid models are computationally cheaper than LES and more accurate than URANS. Most hybrid models developed in the literature employ linear URANS models. The use of non-linear URANS models in the hybrid context has not received significant attention. In this study, we propose the use of a hybrid model based on a non-linear URANS model. Flow past tandem cylinders, with different spacing ratio, at sub-critical Reynolds number regime, is chosen as the test case. Simulations are also performed using URANS and linear hybrid models for comparison. It is shown that the non-linear hybrid models provides the best agreement to measurement data in the literature. Non-linear URANS models will be shown to provide acceptable prediction of hydrodynamic forces. The models are finally used to predict the current load on a generic multi-column floater.


2018 ◽  
Vol 29 (11) ◽  
pp. 1850087 ◽  
Author(s):  
Salwa Fezai ◽  
Fakher Oueslati ◽  
Nader Ben-Cheikh ◽  
Brahim Ben-Beya

Two-dimensional, incompressible fluid flow past a circular cylinder, having a variable diameter, is analyzed numerically at low Reynolds numbers (Re). The Reynolds number is based on the cylinder diameter and free-stream velocity. Numerical outcomes demonstrate that at low Reynolds number, the flow remains steady. Analysis of the flow evolution also shows that with enhancing Re beyond a certain critical value, the flow becomes unstable and undergoes a Hop bifurcation. The critical Reynolds number beyond which the flow becomes unsteady is determined for each configuration by an extrapolation procedure. A nonuniform variation of the critical Reynolds number (Rec) with the diameter is observed. On the other hand, it is observed that elongating the diameter of the cylinder leads to increasing the critical Reynolds number. It was also noted that the variation of the diameter value has a significant influence on the different regimes criteria as well as on the vortex detachment. Besides, it is seen that the diameter variation may lead to the birth of vortices with different oscillating frequencies due to the increase of the cylinder diameter that modifies considerably the Strouhal number.


Sign in / Sign up

Export Citation Format

Share Document