Flow Past a Permeable Manipulator Ring Placed in a Turbulent Pipe Flow

Author(s):  
Koji Utsunomiya ◽  
Suketsugu Nakanishi ◽  
Hideo Osaka

Turbulent pipe flow past a ring-type permeable manipulator was investigated by measuring the mean flow and turbulent flow fields. The permeable manipulator ring had a rectangular cross section and a height 0.14 times the pipe radius. The experiments were performed under four conditions of the open area ratio β of the permeable ring (β = 0.1, 0.2, 0.3 and 0.4) for Reynolds number of 6.2×104. The results indicate that as the open-area ratio increased, the separated shear layer arising from the permeable ring top became weaker and the pressure loss was reduced by increasing fluid flow through the permeable ring. When β was less than 0.2, the velocity gradient was steeper over the permeable ring and in the shear layer near the reattachment region. When β was greater than 0.3, the width of the shear layer showed a relatively large augmentation and the back pressure in the separating region increases. Further, the response of the turbulent flow field to the permeable ring was delayed compared with that of the mean velocity field, and these differences increased with β. The turbulence intensities and Reynolds shear stress profiles near the reattachment point increased near the wall region as β increased, while those peak values that were taken at the locus of the manipulator ring height decreased as β increased.

2011 ◽  
Vol 687 ◽  
pp. 376-403 ◽  
Author(s):  
Seong Jae Jang ◽  
Hyung Jin Sung ◽  
Per-Åge Krogstad

AbstractThe flow in an axisymmetric contraction fitted to a fully developed pipe flow is experimentally and numerically studied. The reduction in turbulence intensity in the core region of the flow is discussed on the basis of the budgets for the various turbulent stresses as they develop downstream. The contraction generates a corresponding increase in energy in the near-wall region, where the sources for energy production are quite different and of opposite sign compared to the core region, where these effects are caused primarily by vortex stretching. The vortices in the pipe become aligned with the flow as the stretching develops through the contraction. Vortices which originally have a spanwise component in the pipe are stretched into pairs of counter-rotating vortices which become disconnected and aligned with the mean flow. The structures originating in the pipe which are inclined at an angle with respect to the wall are rotated towards the local mean streamlines. In the very near-wall region and the central part of the contraction the flow tends towards two-component turbulence, but these structures are different. The streamwise and azimuthal stresses are dominant in the near-wall region, while the lateral components dominate in the central part of the flow. The two regions are separated by a rather thin region where the flow is almost isotropic.


2006 ◽  
Vol 72 (723) ◽  
pp. 2695-2701
Author(s):  
Koji UTSUNOMIYA ◽  
Suketsugu NAKANISHI ◽  
Masaki MORISHITA ◽  
Hideo OSAKA

1983 ◽  
Vol 137 ◽  
pp. 331-345 ◽  
Author(s):  
Y. Nakamura ◽  
Y. Ohya

There are two main effects of turbulence on the mean flow past rods of square cross-section aligned with the approaching flow. Small-scale turbulence increases the growth rate of the shear layer, while large-scale turbulence enhances the roll-up of the shear layer. The consequences of these depend on the length of a square rod. The mean base pressure of a square rod varies considerably with turbulence intensity and scale as well as with its length.


1969 ◽  
Vol 37 (1) ◽  
pp. 1-30 ◽  
Author(s):  
E. R. Corino ◽  
Robert S. Brodkey

The objective of this study is to investigate for turbulent flow the fluid motions very near a solid boundary, and to create a physical picture which relates these motions to turbulence generation and transport processes. An experimental technique was developed which permitted detailed observations of the regions very near a pipe wall, including the viscous sublayer, without requiring the introduction of any injection or measuring device into the flow. This technique involved suspending solid particles of colloidal size in a liquid, and photographing their motions with a high-speed motion picture camera moving with the flow. To provide greater detail, the field of view was magnified.Fluid motions were observed to change in character with distance from the wall. The sublayer was continuously disturbed by small-scale velocity fluctuations of low magnitude and periodically disturbed by fluid elements which penetrated into the region from positions further removed from the wall. From a thin region adjacent to the sublayer, fluid elements were periodically ejected outward toward the centreline. Often there was associated with these events a zone of high shear at the interface between the mean flow and the decelerated region that gave rise to the ejected element. When the ejected element entered this shear zone, it interacted with the mean flow and created intense, chaotic velocity fluctuations. These ejections and resulting fluctuations were the most important feature of the wall region, and are believed to be a factor in the generation and maintenance of turbulence.


1994 ◽  
Vol 268 ◽  
pp. 175-210 ◽  
Author(s):  
J. G. M. Eggels ◽  
F. Unger ◽  
M. H. Weiss ◽  
J. Westerweel ◽  
R. J. Adrian ◽  
...  

Direct numerical simulations (DNS) and experiments are carried out to study fully developed turbulent pipe flow at Reynolds number Rec ≈ 7000 based on centreline velocity and pipe diameter. The agreement between numerical and experimental results is excellent for the lower-order statistics (mean flow and turbulence intensities) and reasonably good for the higher-order statistics (skewness and flatness factors). To investigate the differences between fully developed turbulent flow in an axisymmetric pipe and a plane channel geometry, the present DNS results are compared to those obtained from a channel flow simulation. Beside the mean flow properties and turbulence statistics up to fourth order, the energy budgets of the Reynolds-stress components are computed and compared. The present results show that the mean velocity profile in the pipe fails to conform to the accepted law of the wall, in contrast to the channel flow. This confirms earlier observations reported in the literature. The statistics on fluctuating velocities, including the energy budgets of the Reynolds stresses, appear to be less affected by the axisymmetric pipe geometry. Only the skewness factor of the normal-to-the-wall velocity fluctuations differs in the pipe flow compared to the channel flow. The energy budgets illustrate that the normal-to-the-wall velocity fluctuations in the pipe are altered owing to a different ‘impingement’ or ‘splatting’ mechanism close to the curved wall.


1977 ◽  
Vol 82 (4) ◽  
pp. 705-723 ◽  
Author(s):  
T. R. Heidrick ◽  
S. Banerjee ◽  
R. S. Azad

This paper is the second of a pair describing two-point velocity measurements in fully developed pipe flow. A method of processing hot-film anemometer signals to identify intervals of high energy production (‘bursts’) in wall turbulence is presented. The method uses filtered cross-stream spatial derivatives of the axial velocity fluctuations. It is demonstrated to be more sensitive to ‘bursts’ than several other methods of indentification. The bursts identified in this manner are shown to have similar characteristics to those observed in visual studies.The technique has been applied to the wall region of turbulent pipe flow. Mean burst rates have been obtained at various distances from the wall for three Reynolds numbers. It is shown that the mean burst rate cannot be reliably obtained from a previously used technique based on the autocorrelation of the axial velocity fluctuations.On the basis of our experiments, the mean burst rate and the turbulent shear stress have been found to vary similarly with distance from the wall. In the region near the wall where the shear stress is constant the mean burst rate is independent of the kinematic viscosity.Some characteristics of the velocity fluctuations during burst intervals have been studied. All the bursts began with a relative minimum in the axial velocity fluctuations followed by a peak in the cross-stream spatial derivative. A second peak always occurred midway through the burst. The sequence of events is somewhat similar to that in the last stage of laminar-to-turbulent transition.


1976 ◽  
Vol 73 (3) ◽  
pp. 565-591 ◽  
Author(s):  
J. M. R. Graham

The method of Vickery for calculating the drag of plane lattice structures normal to a turbulent stream is extended to cases of increased solidity. The analysis incorporates an extended version of Taylor's theory for the flow through a porous plate, and a simplified version of Hunt's analysis of the distortion of a turbulent flow by the mean flow field of a body. Some comparisons are made with experimental data.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Sign in / Sign up

Export Citation Format

Share Document