Turbulent flow past a porous plate

1976 ◽  
Vol 73 (3) ◽  
pp. 565-591 ◽  
Author(s):  
J. M. R. Graham

The method of Vickery for calculating the drag of plane lattice structures normal to a turbulent stream is extended to cases of increased solidity. The analysis incorporates an extended version of Taylor's theory for the flow through a porous plate, and a simplified version of Hunt's analysis of the distortion of a turbulent flow by the mean flow field of a body. Some comparisons are made with experimental data.

The dispersion of soluble matter introduced into a slow stream of solvent in a capillary tube can be described by means of a virtual coefficient of diffusion (Taylor 1953 a ) which represents the combined action of variation of velocity over the cross-section of the tube and molecluar diffusion in a radial direction. The analogous problem of dispersion in turbulent flow can be solved in the same way. In that case the virtual coefficient of diffusion K is found to be 10∙1 av * or K = 7∙14 aU √ γ . Here a is the radius of the pipe, U is the mean flow velocity, γ is the resistance coefficient and v * ‘friction velocity’. Experiments are described in which brine was injected into a straight 3/8 in. pipe and the conductivity recorded at a point downstream. The theoretical prediction was verified with both smooth and very rough pipes. A small amount of curvature was found to increase the dispersion greatly. When a fluid is forced into a pipe already full of another fluid with which it can mix, the interface spreads through a length S as it passes down the pipe. When the interface has moved through a distance X , theory leads to the formula S 2 = 437 aX ( v * / U ). Good agreement is found when this prediction is compared with experiments made in long pipe lines in America.


1979 ◽  
Vol 101 (3) ◽  
pp. 373-375
Author(s):  
M. L. Agarwal ◽  
P. K. Pande ◽  
Rajendra Prakash

The mean flow past a fence submerged in a turbulent boundary layer is numerically simulated. The governing equations have been simplified by neglecting the convective effects of turbulence and solved numerically using experimental boundary conditions. The information obtained includes the shape and size of the upstream and downstream separation bubbles and the streamline pattern in the entire flow field. General agreement between the simulated and the experimental flow field was found.


Author(s):  
Koji Utsunomiya ◽  
Suketsugu Nakanishi ◽  
Hideo Osaka

Turbulent pipe flow past a ring-type permeable manipulator was investigated by measuring the mean flow and turbulent flow fields. The permeable manipulator ring had a rectangular cross section and a height 0.14 times the pipe radius. The experiments were performed under four conditions of the open area ratio β of the permeable ring (β = 0.1, 0.2, 0.3 and 0.4) for Reynolds number of 6.2×104. The results indicate that as the open-area ratio increased, the separated shear layer arising from the permeable ring top became weaker and the pressure loss was reduced by increasing fluid flow through the permeable ring. When β was less than 0.2, the velocity gradient was steeper over the permeable ring and in the shear layer near the reattachment region. When β was greater than 0.3, the width of the shear layer showed a relatively large augmentation and the back pressure in the separating region increases. Further, the response of the turbulent flow field to the permeable ring was delayed compared with that of the mean velocity field, and these differences increased with β. The turbulence intensities and Reynolds shear stress profiles near the reattachment point increased near the wall region as β increased, while those peak values that were taken at the locus of the manipulator ring height decreased as β increased.


Author(s):  
Jahed Hossain ◽  
Erik Fernandez ◽  
Christian Garrett ◽  
Jay Kapat

The present study aims to understand the flow, turbulence, and heat transfer in a single row narrow impingement channel for gas turbine heat transfer applications. Since the advent of several advanced manufacturing techniques, narrow wall cooling schemes have become more practical. In this study, the Reynolds number based on jet diameter was ≃15,000, with the jet plate having fixed jet hole diameters and hole spacing. The height of the channel is 3 times the impingement jet diameter. The channel width is 4 times the jet diameter of the impingement hole. The channel configuration was chosen such that the crossflow air is drawn out in the streamwise direction (maximum crossflow configuration). The impinging jets and the wall jets play a substantial role in removing heat in this kind of configuration. Hence, it is important to understand the evolution of flow and heat transfer in a channel of this configuration. The dynamics of flow and heat transfer in a single row narrow impingement channel are experimentally and numerically investigated. Particle Image Velocimetry (PIV) was used to reveal the detailed information of flow phenomena. The detailed PIV experiment was performed on this kind of impingement channel to satisfy the need for experimental data for this kind of impingement configuration, in order to validate turbulence models. PIV measurements were taken at a plane normal to the target wall along the jet centerline. The mean velocity field and turbulent statistics generated from the mean flow field were analyzed. The experimental data from the PIV reveals that flow is highly anisotropic in a narrow impingement channel. To support experimental data, wall-modeled Large Eddy Simulation (LES), and Reynolds Averaged Navier-Stokes (RANS) simulations (SST k-ω, v2–f, and Reynolds Stress Model (RSM)) were performed in the same channel geometry. The Wall-Adapting Local Eddy-viscosity SGS mdoel (WALE) [1] is used for the LES calculation. Mean velocities calculated from the RANS and LES were compared with the PIV data. Turbulent kinetic energy budgets were calculated from the experiment, and were compared with the LES and RSM model, highlighting the major shortcomings of RANS models to predict correct heat transfer behavior for the impingement problem. Temperature Sensitive Paint (TSP) was also used to experimentally obtain a local heat transfer distribution at the target and the side walls. An attempt was made to connect the complex aerodynamic flow behavior with results obtained from heat transfer, indicating heat transfer is a manifestation of flow phenomena. The accuracy of LES in predicting the mean flow field, turbulent statistics, and heat transfer is shown in the current work as it is validated against the experimental data through PIV and TSP.


2001 ◽  
Vol 123 (2) ◽  
pp. 228-236 ◽  
Author(s):  
Francois Schmitt ◽  
Birinchi K. Hazarika ◽  
Charles Hirsch

A database for the complex turbulent flow of a confined double annular burner in cold conditions is presented here. In the region close to the exit of the annular nozzles LDV measurements at 5515 grid points in the meridional plane were conducted. At each measurement position, validated data for 3000–16,000 particles were recorded, and the mean axial and radial velocities, axial and radial turbulence intensity and Reynolds stresses were computed. The resulting mean flow field is axisymmetric within an uncertainty of 2 percent. The contour plots of turbulent quantities on the fine grid, as well as the streamlines based on the mean flow field, are presented for the flow.


1989 ◽  
Author(s):  
R. J. Kind ◽  
M. G. Tobin

This paper presents the results of performance measurements and detailed measurements of the mean flow field at rotor inlet and rotor exit in three squirrel cage fan configurations. The flow-field measurements were taken with a five-hole probe and yield total pressure, static pressure and the three components of velocity. Measurements were taken for two casing throat areas and for two different rotors. For each configuration the flow field was measured for flow rates below, near and above the best-efficiency point. Flow patterns are complex and there is reverse flow through the rotor blading even at the best-efficiency operating condition. Although complex, the main features of flow behaviour can be understood. They were common to all three fan configurations.


1990 ◽  
Vol 112 (1) ◽  
pp. 84-90 ◽  
Author(s):  
R. J. Kind ◽  
M. G. Tobin

This paper presents the results of performance measurements and detailed measurements of the mean flow field at rotor inlet and rotor exit in three squirrel-cage fan configurations. The flow-field measurements were taken with a five-hole probe and yield total pressure, static pressure, and the three components of velocity. Measurements were taken for two casing throat areas and for two different rotors. For each configuration the flow field was measured for flow rates below, near, and above the best-efficiency point. Flow patterns are complex and there is reverse flow through the rotor blading even at the best-efficiency operating condition. Although complex, the main features of flow behavior can be understood. They were common to all three fan configurations.


1985 ◽  
Vol 107 (4) ◽  
pp. 455-459 ◽  
Author(s):  
N. T. Obot ◽  
K. Adu-Wusu

Experiments were carried out to determine the pressure drop characteristics and mean velocity distributions in a scalene triangualr duct having two rounded corners. The present data for friction factor are adequately represented by the circular pipe line for laminar flow, but fall below the latter for turbulent flow. The mean flow field is highly asymmetric, the degree of asymmetry being more accentuated along lines parallel to the altitude than parallel to the base.


2003 ◽  
Vol 125 (4) ◽  
pp. 445-460 ◽  
Author(s):  
Sonu S. Varghese ◽  
Steven H. Frankel

Pulsatile turbulent flow in stenotic vessels has been numerically modeled using the Reynolds-averaged Navier-Stokes equation approach. The commercially available computational fluid dynamics code (CFD), FLUENT, has been used for these studies. Two different experiments were modeled involving pulsatile flow through axisymmetric stenoses. Four different turbulence models were employed to study their influence on the results. It was found that the low Reynolds number k-ω turbulence model was in much better agreement with previous experimental measurements than both the low and high Reynolds number versions of the RNG (renormalization-group theory) k-ε turbulence model and the standard k-ε model, with regard to predicting the mean flow distal to the stenosis including aspects of the vortex shedding process and the turbulent flow field. All models predicted a wall shear stress peak at the throat of the stenosis with minimum values observed distal to the stenosis where flow separation occurred.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


Sign in / Sign up

Export Citation Format

Share Document