Numerical Simulation for Thermal Design of a Gas Water Heater With Turbulent Combined Convection

Author(s):  
Ali Yari ◽  
Siamak Hosseinzadeh ◽  
Ali Akbar Golneshan ◽  
Ramin Ghasemiasl

This article investigates the effects of geometric parameters on a turbulent asymmetrical heat transfer in vertical channels with radiation and blowing from a wall. Hydrodynamic behaviour and heat transfer results are obtained by the solution of the complete Navier–Stokes and energy equations using a control volume finite element method. In this paper, commercial codes were used to solve the equations. The equations involved were numerically solved with three turbulent models including Spalart-Allmaras, R-N-G k-ε with ‘standard wall function’ wall nearby model, R-N-G k-ε with ‘enhanced wall treatment’ wall nearby model and ‘ray tracing’ radiation techniques. Turbulent flow with ‘low Reynolds Spalart-Allmaras turbulence model’ and radiation with ‘discrete transfer radiation method’ was modelled. The results were compared with experimental data and appropriate methods were selected for turbulent modelling. The problems of different Grashof number, Reynolds number, radiation parameters and Prandtl number were solved and the effects of geometric parameters on the fluid flow, radiation-convection-blowing heat transfer and the total efficiency were determined.

Author(s):  
Ali Yari ◽  
Siamak Hosseinzadeh ◽  
Ali Akbar Golneshan ◽  
Ramin Ghasemiasl

This article investigates the effects of geometric parameters on a turbulent asymmetrical heat transfer in vertical channels with radiation and blowing from a wall. Hydrodynamic behaviour and heat transfer results are obtained by the solution of the complete Navier–Stokes and energy equations using a control volume finite element method. In this paper, commercial codes were used to solve the equations. The equations involved were numerically solved with three turbulent models including Spalart-Allmaras, R-N-G k-ε with ‘standard wall function’ wall nearby model, R-N-G k-ε with ‘enhanced wall treatment’ wall nearby model and ‘ray tracing’ radiation techniques. Turbulent flow with ‘low Reynolds Spalart-Allmaras turbulence model’ and radiation with ‘discrete transfer radiation method’ was modelled. The results were compared with experimental data and appropriate methods were selected for turbulent modelling. The problems of different Grashof number, Reynolds number, radiation parameters and Prandtl number were solved and the effects of geometric parameters on the fluid flow, radiation-convection-blowing heat transfer and the total efficiency were determined.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


2000 ◽  
Author(s):  
M. Singh ◽  
P. K. Panigrahi ◽  
G. Biswas

Abstract A numerical study of rib augmented cooling of turbine blades is reported in this paper. The time-dependent velocity field around a pair of symmetrically placed ribs on the walls of a three-dimensional rectangular channel was studied by use of a modified version of Marker-And-Cell algorithm to solve the unsteady incompressible Navier-Stokes and energy equations. The flow structures are presented with the help of instantaneous velocity vector and vorticity fields, FFT and time averaged and rms values of components of velocity. The spanwise averaged Nusselt number is found to increase at the locations of reattachment. The numerical results are compared with available numerical and experimental results. The presence of ribs leads to complex flow fields with regions of flow separation before and after the ribs. Each interruption in the flow field due to the surface mounted rib enables the velocity distribution to be more homogeneous and a new boundary layer starts developing downstream of the rib. The heat transfer is primarily enhanced due to the decrease in the thermal resistance owing to the thinner boundary layers on the interrupted surfaces. Another reason for heat transfer enhancement can be attributed to the mixing induced by large-scale structures present downstream of the separation point.


Author(s):  
Reza NB Abadi ◽  
Mahdi Deymi-Dashtebayaz ◽  
Niki Rezazadeh

In this paper, the effect of crosswind flow and barrier placement on the performance of the condenser fan in a subway train is investigated. In addition, the amount of heat transfer on the condenser tubes is also analyzed. At different velocities of the train, variations in the velocity profile and drag force are determined for various geometries including triangular, rectangular, symmetric triangular barriers, and a barrier with parallel lines outside of the fan. Navier–Stokes, energy equations, and k– ω turbulence model have been used for the numerical modeling of the turbulent and incompressible flow. The results show that due to the created vortices behind the triangular and rectangular barriers, a negative velocity on the outflow of the fan is observed. Also, the symmetric triangular barrier minimizes the rotational flow on the top of the fan, and parallel paths have the most impact on the improvement of the fan's performance due to the elimination of all rotating flows. Finally, variations in temperature on the condenser tubes in the presence of barriers that are placed in the middle gap between the holes on the top of the condenser tubes are determined. These barriers move the crosswind flow toward the condenser tubes and decrease the output air temperature of the condenser.


Author(s):  
Arash Saidi ◽  
Bengt Sundén

Internal cooling channels are commonly used to reduce the thermal loads on the gas turbine blades to improve overall efficiency. In this study a numerical investigation has been carried out to provide a validated and consistent method to deal with the prediction of the fluid flow and the heat transfer of such channels with square cross sections. The rotation modified Navier-Stokes and energy equations together with a low-Re number version of the k-ε turbulence model are solved with appropriate boundary conditions. The solution procedure is based on a numerical method using a collocated grid, and the pressure-velocity coupling is handled by the SIMPLEC algorithm. The computations are performed with the assumption of fully developed periodic conditions. The calculations are carried out for smooth ducts with and without rotation and effects of rotation on the heat transfer are described. Similar numerical calculations have carried out for channels with rib-roughened walls. The obtained results are compared with available experimental data and empirical correlations for the heat transfer rate and the friction factor. Some details of the flow and heat transfer fields are also presented.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Abhishek G. Ramgadia ◽  
Arun K. Saha

Present study focuses on numerical investigation of fully developed flow and heat transfer through three channels having sine-shaped, triangle-shaped, and arc-shaped wall profiles. All computations are performed at Reynolds number of 600. Finite volume method on collocated grid is used to solve the time-dependent Navier–Stokes and energy equations in primitive variable form. For all the geometries considered in the study, the ratios Hmin/Hmax and L/a are kept fixed to 0.4 and 8.0, respectively. The thermal performances of all the three wall configurations are assessed using integral parameters as well as instantaneous, time-averaged and fluctuating flow fields. The geometry with the sinusoidal-shaped wall profile is found to produce the best thermal properties as compared to the triangle-shaped and the arc-shaped profiles though the obtained heat transfer is the highest for the arc-shaped geometry.


Author(s):  
Noris Gallandat ◽  
J. Rhett Mayor

This paper presents a numerical model assessing the potential of ionic wind as a heat transfer enhancement method for the cooling of grid distribution assets. Distribution scale power routers (13–37 kV, 1–10 MW) have stringent requirements regarding lifetime and reliability, so that any cooling technique involving moving parts such as fans or pumps are not viable. Increasing the air flow — and thereby enhancing heat transfer — through Corona discharge could be an attractive solution to the thermal design of such devices. In this work, the geometry of a rectangular, vertical channel with a corona electrode at the entrance is considered. The multiphysics problem is characterized by a set of four differential equations: the Poisson equation for the electric field and conservation equations for electric charges, momentum and energy. The electrodynamics part of the problem is solved using a finite difference approximation (FDA). Solutions for the potential, electric field and free charge density are presented for a rectangular control volume with mixed boundary conditions.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Meriem Ammar ◽  
Zied Driss ◽  
Wajdi Chtourou ◽  
Mohamed Abid

AbstractThe aim of this paper is to study the effect of baffles length on the turbulent flows in stirred tanks. The hydrodynamic behaviour induced by a Rushton turbine (RT6) is numerically predicted by solving the Navier-Stokes equations in conjunction with the Renormalization Group (RNG) of the k-ɛ turbulence model. These equations are solved by a control volume discretization method. The numerical results from the application of the computational fluid dynamics (CFD) code Fluent with the multi-reference frame (MRF) model are presented in the vertical and horizontal planes in the impeller stream region. Our studies were carried out on three different systems. The most effective system was selected based on its calculated power consumption figure. All numerical results showed good agreement with experimental data.


1985 ◽  
Vol 107 (2) ◽  
pp. 334-337 ◽  
Author(s):  
O. A. Arnas ◽  
M. A. Ebadian

Convective heat transfer for steady laminar flow between two concentric circular pipes with walls heated and/or cooled independently and subjected to uniform heat generation is presented in analytical closed form utilizing the linearized Navier-Stokes and energy equations. The flow field is hydrodynamically and thermally fully developed. The effect of heat generation is depicted in Fig. 1 where the ratio of the Nusselt number with heat generation to without heat generation is plotted against the radius ratio, the core size ω. It is seen that heat generation may have positive as well as negative effect on the Nusselt number.


1999 ◽  
Vol 121 (1) ◽  
pp. 50-56 ◽  
Author(s):  
I. Sezai ◽  
A. A. Mohamad

The flow and heat transfer characteristics of impinging laminar jets issuing from rectangular slots of different aspect ratios have been investigated numerically through the solution of three-dimensional Navier-Stokes and energy equations in steady state. The three-dimensional simulation reveals the existence of pronounced streamwise velocity off-center peaks near the impingement plate. Furthermore, the effect of these off-center velocity peaks on the Nusselt number distribution is also investigated. Interesting three-dimensional flow structures are detected which cannot be predicted by two-dimensional simulations.


Sign in / Sign up

Export Citation Format

Share Document