Delta Winglet Pairs in the Core of a Pipe and its Effect on Heat Transfer and Flow

Author(s):  
Md. Islam ◽  
Z. Chong ◽  
Md. Alam

Abstract Vortex generators/turbulent promoters generate the longitudinal vortices which introduce the better mixing of the fluid with fluid circulation and enhance heat transfer. In this research, experimental investigations have been carried out to study the effect of delta winglet vortex generator (DWVG) in the core of the pipe on heat transfer and flow behavior. In this experiment, two pairs of delta winglet vortex generators (DWVG) were printed on the upside and downside of the thin plate using 3D printing technology in a ring and then placed in the core of the pipe to generate longitudinal vortices. Middle plate was very thin. The effect of heights (H = 5mm, 10mm, 15mm and 20mm) of DWVG for 10° angle of attack and 15mm spacing between leading edges of VG pairs on heat transfer and pressure drop was studied. The experiments were conducted for a fully developed turbulent flow of air in the range of Reynolds numbers (Re) 5000–25000. The influence of the DWVGs on heat transfer and pressure drop was investigated in terms of the Nusselt number (Nu) and friction factor (f). The experimental results indicate that DWVG in the core of the tube results in a considerable increase in Nu with some pressure penalty. It is found that DWVG increase Nu considerably only when H is over 10mm. Nu increases with Re and H. Friction factor decreases with Re but increase with H. The thermal performance enhancement (TPE) was noticed decreasing with Re. TPE could be obtain up to 1 only when the height is over 10mm for Re ≤ 7500. The experimental results show that the DWVG in the core of the pipe is not a good option to enhance the heat transfer at a higher Re.

Author(s):  
Md. Islam ◽  
Z. Chong ◽  
S. Bojanampati

Various technologies have been developed to enhance flow mixing and heat transfer in order to develop an efficient compact heat exchanging devices. Vortex generators/turbulent promoters generate the vortices which reduce the boundary layer thickness and introduce the better mixing of the fluid to enhance the heat transfer. In this research experimental investigations have been carried out to study the effect of delta winglet vortex generator pairs on heat transfer and flow behavior. To generate longitudinal vortex flow, two pairs of the delta winglet vortex generators (DWVG) with the length of 10mm and winglet-pitch to tube-diameter ratio (PR = 4.8) are mounted on the inner wall of a circular tube. The DWVG pairs with two different winglet-height to tube-diameter ratios (Blockage ratio, BR = 0.1 and 0.2), three attack angles (α = 10°, 20°, 30°) and three spacings between leading edges (S = 10, 15 and 20mm) are studied. The experiments were conducted with DWVGs pairs for the air flow range of Reynolds numbers 5000–25000. The influence of the DWVGs on heat transfer and pressure drop was investigated in terms of the Nusselt number and friction factor. The experimental results indicate that DWVG pair in a tube results in a considerable enhancement in Nusselt number (Nu) with some pressure penalty. It is found that DWVG increases Nu up to 85% over the smooth tube. It is also observed that Nusselt number increases with Re, blockage ratio and attack angle. Friction factor decreases with Re but increases with blockage ratio, spacing and attack angle. And 30° DWVG pair with S = 20mm, BR = 0.2 gets the highest friction factor. The Highest thermal performance enhancement (TPE) was noticed for α = 10°, S = 20mm, BR = 0.2 for turbulent flows. To obtain qualitative information on the flow behavior and vortex structures, flow was visualized by laser sheet using smoke as a tracer supplied at the entrance of the test section. The generation and development of longitudinal vortices influenced by DWVG pairs were clearly observed.


Author(s):  
Md. Islam ◽  
L. Guangda ◽  
S. Ainane ◽  
S. Bojanampati

Abstract In this research, heat transfer and pressure drop from a tube with vortex generators (VGs) insert are numerically investigated. The effects of heights, attack angles of VGs inside a tube on heat transfer and flow behavior are investigated. CFD simulations, with and without VGs insert, are done for an air flow range (Reynolds numbers 6000 to 33000) and for a constant heat flux on the tube model surface. Four VGs are fitted in a circular pattern on the inner surface of the tube. We studied the characteristics of the delta winglet VGs for different attack angles and blockage ratios. The Nusselt number and friction factor results show the influence of the VGs insert on heat transfer and frictional factor. The maximum Nusselt number increment (Nu/Nu0) was achieved to be 1.75 while the maximum friction factor increment (f/f0) was 3.21. In order to understand the flow behavior and different vortices, path lines released by the VGs surface and details of the vortices are also studied.


Author(s):  
Petrus Setyo Prabowo ◽  
◽  
Stefan Mardikus ◽  
Ewaldus Credo Eukharisto ◽  

Vortex generators are addition surface that can increase heat transfer area and change the fluid flow characteristics of the working fluid to increase heat transfer coefficient. The use of vortex generators produces longitudinal vortices that can increase the heat transfer performance because of the low pressure behind vortex generators. This investigation used delta winglet vortex generator that was combined with rectangular vortex generator to Reynold numbers ranging 6,000 to 10,000. The parameters of Nusselt number, friction factor, velocity vector and temperature distribution will be evaluated.


2019 ◽  
Vol 130 ◽  
pp. 01027
Author(s):  
Stefan Mardikus ◽  
Petrus Setyo Prabowo ◽  
Vinsensius Tiara Putra ◽  
Made Wicaksana Ekaputra ◽  
Juris Burlakovs

Vortex generator is a method to enhancing of heat exchanger performance but still have some disadvantages when the heat transfer performance increase. One of the disadvantage using vortex generator is high pressure drop. This investigation will be compared three type vortex generators to result the overall performance of heat transfer around tube in plate fin heat exchanger. The three types of vortex generator to investigate are rectangular winglet type, delta winglet type, and trapezoidal winglet type in laminar flow. The result showed that using the kind of trapezoidal winglet pair type in the plate fin and tube heat exchanger consist of six rows of round tube with two neighboring fins form a channel better performance than two types vortex generators such as rectangular winglet type and delta winglet type. The heat transfer coefficient when use trapezoidal winglet type was increased almost same with rectangular winglet type and pressure drop was decreased more than delta winglet type.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5219
Author(s):  
Jin-Cherng Shyu ◽  
Jhao-Siang Jheng

Because the delta winglet in common-flow-down configuration has been recognized as an excellent type of vortex generators (VGs), this study aims to experimentally and numerically investigate the thermo-hydraulic performance of four different forms of winglet VGs featuring sweptback delta winglets in the channel flow in the range 200 < Re < 1000. Both Nusselt number and friction factor of plate-fin heat sinks having different forms of winglets, including delta winglet pair (DWP), rectangular winglet pair (RWP), swept delta winglet pair (SDWP), and swept trapezoid winglet pair (STWP), were measured in a standard wind tunnel without bypass in this study. Four rows of winglets with in-line arrangement were punched on each 10-mm-long, 0.2-mm-thick copper plate, and a total of 16 pieces of copper plates with spacing of 2 mm were fastened together to achieve the heat sink. The projected area, longitudinal and winglet tip spacing, height and angle of attack of those winglets were fixed. Besides that, three-dimensional numerical simulation was also performed in order to investigate the temperature and fluid flow over the plate-fin. The results showed that the longitudinal, common-flow-down vortices generated by the VGs augmented the heat transfer and pressure drop of the heat sink. At airflow velocity of 5 m/s, the heat transfer coefficient and pressure drop of plain plate-fin heat sink were 50.8 W/m2·K and 18 Pa, respectively, while the heat transfer coefficient and the pressure drop of heat sink having SDWP were 70.4 W/m2·K and 36 Pa, respectively. It was found that SDWP produced the highest thermal enhancement factor (TEF) of 1.28 at Re = 1000, followed by both RWP and STWP of similar TEF in the range 200 < Re < 1000. The TEF of DWP was the lowest and it was rapidly increased with the increase of airflow velocity.


2014 ◽  
Vol 592-594 ◽  
pp. 1590-1595 ◽  
Author(s):  
Naga Sarada Somanchi ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal circular tube by means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube (without tube inserts). The Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using three kinds of tube inserts namely Rectangular bar with diverging conical strips, Rectangular bar with converging conical strips, Rectangular bar with alternate converging diverging conical strips were carried out to estimate the enhancement of heat transfer rate for air in the presence of inserts. The Reynolds number ranged from 8000 to 19000. In the presence of inserts, Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of the tube insert. Based on experimental investigations, it is observed that, the enhancement of heat transfer using Rectangular bar with converging and diverging conical strips is more effective compared to other inserts. Key words: Heat transfer, enhancement, turbulent flow, conical strip inserts, friction factor, pressure drop.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 209 ◽  
Author(s):  
KeWei Song ◽  
WeiNa Shi ◽  
Xiang Wu ◽  
LiangBi Wang

The effect of transverse pitch between a pair of delta-winglet vortex generators arranged in a common flow down configuration on the symmetrical flow structure and heat-transfer performance was numerically investigated. The results showed that symmetrical longitudinal vortices form a common flow down region between the vortices. The fluid is induced to flow from the top towards the bottom of the channel in the common flow region, which is advantageous to the heat transfer of the bottom fin. The vortex interaction increases and the vortex intensity decreases along with the decrease in transverse pitch of vortex generators. Vortex interaction has a slight influence on pressure penalty. The Nusselt number decreases with increasing vortex interaction. The vortices gradually attenuate and depart from each other during the process of flowing downward. A reasonable transverse pitch of delta-winglet vortex generators in a common-flow-down configuration is recommended for high thermal performance.


Author(s):  
Junling Xie ◽  
Liping Liu

The numerical study proposed is to investigate the effectiveness of delta-winglet vortex generators (VGs) used for heat-transfer enhancement in a horizontal rectangular channel as a typical air passage for fin-and-tube heat exchangers. The effects of four different configurations of vortex generators have been investigated: (1) single pair VGs with a 30 degree attack angle; (2) 2-pair VG array with a 30 degree attack angle; (3) single pair VGs with a 45 attack angle; (4) 2-pair VG array with a 45 attack angle. The numerical results indicate that average Nusselt number increase is 31%–38% and 51%–71% for the channel mounted with VGs with a 30 degree attack angle and a 45 degree attack angle, respectively. The enhancement for single large pair of VGs is higher than that for a V-formation array with 2 small pairs. However, VGs also introduce extra pressure drop penalties to the channel flow, and higher heat-transfer performance is also accompanied by a larger pressure drop penalty. According to the results, a single large pair of VGs with 45 attack angle shows the best overall performance among all the configurations investigated.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Yafid Effendi ◽  
Ali Rosyidin

In this decade, improving the rate of heat transfer has become a big challenge. The high thermal resistance of the gas side of the heat exchanger has an impact on the low rate of heat transfer. Therefore, an experimental study was carried out aimed at looking at conditions of hot temperature and decreased air flow pressure through a heated tube in a rectangular channel using artificial surfaces, namely the concave delta winglet and delta winglet vortex generators. Concave delta winglet vortex generators (CDW VGs) are installed in-line and staggered with one, and two pairs are arranged in common-flow-down (CFD) in the direction of flow with an angle of attack of 15o. The experimental results show that the best thermal performance is observed in the use of two rows CDW VGs staggered, where the value of performance evaluation criteria (PEC) is 28.88% higher than the use of CDW VGs in-line, DW VGs staggered and DW VGs in-line at the same Reynolds number. At the same Reynolds number, the Nusselt number ratio and the friction factor ratio increased 45.25% and 152.05% respectively, occurring in two rows of CDW VGs staggered compared to other vortex generators.Keywords: vortex generators, heat transfer, Nusselt number, friction factor, PEC


Author(s):  
A. Nurizki ◽  
Md. Islam ◽  
Md. Alam

Abstract Vortex generator (VG) is one of the passive techniques which could improve the heat transfer with relatively low pressure drop. Vortex generators create streamwise longitudinal vortices which does not decay until far downstream that leads to have higher heat transfer with a lower pressure drop. The objectives of this experiment were to study the heat transfer and flow characteristics of fully developed turbulent flow due to different arrangement of VGs in a tube. The experiments were performed by using delta winglet vortex generators in a 52 mm circular copper tube. The flow regime varied from 6000 to 27000 Reynolds number. Four vortex generators with 45° angle of attack were used inside the circular tube. Different parameters of the VGs studied in this experiment such as lengths (L = 10, 15, and 20 mm) and arrangements (R = 0° to −15°). The results indicate that the length affected friction factor (f) and Nusselt number (Nu) significantly. L20 reached the highest f and Nu. The staggered arrangement concludes a significant drop on friction factor and a significant increase on Nusselt number. Consequently, the thermal performance of all staggered arrangement cases could reach a significant rise compared to the inline arrangement. The oil flow visualization could track down the trace of vortex behind the VG. The inline arrangement showed a strong vortex formed as a result of VG which was related to higher f while the staggered arrangement indicated a weak vortex.


Sign in / Sign up

Export Citation Format

Share Document