Object Oriented Dexterity Analysis and Design Application for Spatial Robot Hands

Author(s):  
L. Lu ◽  
C. Cai ◽  
A. H. Soni

Abstract For an arbitrarily shaped object manipulated by a robot hand, this paper presents a procedure for analyzing the position and rotation ranges of the object, and a procedure for designing the kinematic parameters of a hand to meet given requirements on the motion ranges. Rotation dexterity index, dexterity charts, and a dexterity scalar characterizing both position range and rotation range are introduced for the performance evaluation of a robot hand. Least-square-error iteration and steps are detailed for the kinematic parameter determination of a robot hand.

Robotica ◽  
1991 ◽  
Vol 9 (1) ◽  
pp. 99-105 ◽  
Author(s):  
D. H. Kim ◽  
K. H. Cook ◽  
J. H. Oh

SUMMARYThis paper presents a simple identification method of the actual kinematic parameters for a robot with parallel joints. It is known that Denavit–Hartenberg's coordinate System is not useful for nearly parallel joints. In this paper, the coordinate frames are reassigned to model the kinematic parameter between nearly parallel joints by four parameters. The proposed identification method uses a straight ruler about 1 m long. A robot hand is placed by using a teaching pendant at the prescribed points on the ruler, and the corresponding error function is defined. The identified kinematic parameters, which make the error function zero, are obtained by the iterative least square method based on the singular value decomposition. In the compensation of joint angles, only the position is considered because the usual applications of robot do not require a precise orientation control.


Author(s):  
Syed M. Rahman ◽  
Tasnim Hassan ◽  
S. Ranji Ranjithan

Parameter determination of advanced cyclic plasticity models which are developed for simulation of cyclic stress-strain and ratcheting responses is complex. This is mainly because of the large number of model parameters which are interdependent and three or more experimental responses are used in parameter determination. Hence the manual trial and error approach becomes quite tedious and time consuming for determining a reasonable set of parameters. Moreover, manual parameter determination for an advanced plasticity model requires in-depth knowledge of the model and experience with its parameter determination. These are few of the primary reasons for advanced cyclic plasticity models not being widely used for analysis and design of fatigue critical structures. These problems could be overcome through developing an automated parameter optimization system using heuristic search technique (e.g. genetic algorithm). This paper discusses the development of such an automatic parameter determination scheme for improved Chaboche model developed by Bari and Hassan [4]. A new stepped GA optimization approach which is found to be more efficient over the conventional GA approach in terms of fitness quality and optimization time is presented.


Author(s):  
Kjersti Gjønnes ◽  
Jon Gjønnes

Electron diffraction intensities can be obtained at large scattering angles (sinθ/λ ≥ 2.0), and thus structure information can be collected in regions of reciprocal space that are not accessable with other diffraction methods. LACBED intensities in this range can be utilized for determination of accurate temperature factors or for refinement of coordinates. Such high index reflections can usually be treated kinematically or as a pertubed two-beam case. Application to Y Ba2Cu3O7 shows that a least square refinememt based on integrated intensities can determine temperature factors or coordinates.LACBED patterns taken in the (00l) systematic row show an easily recognisable pattern of narrow bands from reflections in the range 15 < l < 40 (figure 1). Integrated intensities obtained from measured intensity profiles after subtraction of inelastic background (figure 2) were used in the least square fit for determination of temperature factors and refinement of z-coordinates for the Ba- and Cu-atoms.


1996 ◽  
Vol 35 (01) ◽  
pp. 52-58 ◽  
Author(s):  
A. Mavromatis ◽  
N. Maglaveras ◽  
A. Tsikotis ◽  
G. Pangalos ◽  
V. Ambrosiadou ◽  
...  

AbstractAn object-oriented medical database management system is presented for a typical cardiologic center, facilitating epidemiological trials. Object-oriented analysis and design were used for the system design, offering advantages for the integrity and extendibility of medical information systems. The system was developed using object-oriented design and programming methodology, the C++ language and the Borland Paradox Relational Data Base Management System on an MS-Windows NT environment. Particular attention was paid to system compatibility, portability, the ease of use, and the suitable design of the patient record so as to support the decisions of medical personnel in cardiovascular centers. The system was designed to accept complex, heterogeneous, distributed data in various formats and from different kinds of examinations such as Holter, Doppler and electrocardiography.


2020 ◽  
Vol 17 (1) ◽  
pp. 87-94
Author(s):  
Ibrahim A. Naguib ◽  
Fatma F. Abdallah ◽  
Aml A. Emam ◽  
Eglal A. Abdelaleem

: Quantitative determination of pyridostigmine bromide in the presence of its two related substances; impurity A and impurity B was considered as a case study to construct the comparison. Introduction: Novel manipulations of the well-known classical least squares multivariate calibration model were explained in detail as a comparative analytical study in this research work. In addition to the application of plain classical least squares model, two preprocessing steps were tried, where prior to modeling with classical least squares, first derivatization and orthogonal projection to latent structures were applied to produce two novel manipulations of the classical least square-based model. Moreover, spectral residual augmented classical least squares model is included in the present comparative study. Methods: 3 factor 4 level design was implemented constructing a training set of 16 mixtures with different concentrations of the studied components. To investigate the predictive ability of the studied models; a test set consisting of 9 mixtures was constructed. Results: The key performance indicator of this comparative study was the root mean square error of prediction for the independent test set mixtures, where it was found 1.367 when classical least squares applied with no preprocessing method, 1.352 when first derivative data was implemented, 0.2100 when orthogonal projection to latent structures preprocessing method was applied and 0.2747 when spectral residual augmented classical least squares was performed. Conclusion: Coupling of classical least squares model with orthogonal projection to latent structures preprocessing method produced significant improvement of the predictive ability of it.


2018 ◽  
Vol 77 (4) ◽  
pp. 230-240
Author(s):  
D. P. Markov

Railway bogie is the basic element that determines the force, kinematic, power and other parameters of the rolling stock, and its movement in the railway track has not been studied enough. Classical calculation of the kinematic and dynamic parameters of the bogie's motion with the determination of the position of its center of rotation, the instantaneous axes of rotation of wheelsets, the magnitudes and directions of all forces present a difficult problem even in quasi-static theory. The paper shows a simplified method that allows one to explain, within the limits of one article, the main kinematic and force parameters of the bogie movement (installation angles, clearance between the wheel flanges and side surfaces of the rails), wear and contact damage to the wheels and rails. Tribology of the railway bogie is an important part of transport tribology, the foundation of the theory of wheel-rail tribosystem, without which it is impossible to understand the mechanisms of catastrophic wear, derailments, contact fatigue, cohesion of wheels and rails. In the article basic questions are considered, without which it is impossible to analyze the movement of the bogie: physical foundations of wheel movement along the rail, types of relative motion of contacting bodies, tribological characteristics linking the force and kinematic parameters of the bogie. Kinematics and dynamics of a two-wheeled bogie-rail bicycle are analyzed instead of a single wheel and a wheelset, which makes it clearer and easier to explain how and what forces act on the bogie and how they affect on its position in the rail track. To calculate the motion parameters of a four-wheeled bogie, it is represented as two two-wheeled, moving each on its own rail. Connections between them are replaced by moments with respect to the point of contact between the flange of the guide wheel and the rail. This approach made it possible to give an approximate estimation of the main kinematic and force parameters of the motion of an ideal bogie (without axes skewing) in curves, to understand how the corners of the bogie installation and the gaps between the flanges of the wheels and rails vary when moving with different speeds, how wear and contact injuries arise and to give recommendations for their assessment and elimination.


2017 ◽  
Vol 2 (11) ◽  
pp. 1-7
Author(s):  
Izay A. ◽  
Onyejegbu L. N.

Agriculture is the backbone of human sustenance in this world. With growing population, there is need for increased productivity in agriculture to be able to meet the demands. Diseases can occur on any part of a plant, but in this paper only the symptoms in the fruits of a plant is considered using segmentation algorithm and edge/ sizing detectors. We also looked at image processing using fuzzy logic controller. The system was designed using object oriented analysis and design methodology. It was implemented using MySQL for the database, and PHP programming language. This system will be of great benefit to farmers and will encourage them in investing their resources since crop diseases can be detected and eliminated early.


Computer ◽  
1992 ◽  
Vol 25 (10) ◽  
pp. 22-39 ◽  
Author(s):  
R.G. Fichman ◽  
C.F. Kemerer

Sign in / Sign up

Export Citation Format

Share Document