A Genetic Design Methodology for Structure Configuration

Author(s):  
Gerald P. Roston ◽  
Robert H. Sturges

Abstract Human designers and optimization codes are very good at improving the performance of existing designs, however, due to time and resource constraints, human designers tend to limit the range of alternative configurations considered. This paper presents a methodology, called Genetic Design (GD), to aid the designer by generating viable design alternatives. GD uses formal grammars for artifact description and representation, evaluates the artifacts automatically and manipulates the representations with genetic programming-like operations. GD can explore a wide breadth of the available design space, though at shallow depth, and presents alternatives to the human designer. The combination of GD’s ability to explore the design space and the human engineer’s ability to optimize existing configurations, promotes the production of viable, new design concepts by avoiding the inefficiencies associated with trial and error methods. This paper explores one application of GD: the design of simple truss bridges.


Author(s):  
C. R. Liu ◽  
J. C. Trappey

Abstract This paper discusses the concept of managing the design process using Objected Oriented Programming Paradigm. A software system shell, called MetaDesigner is being developed for aiding the human designer to create new designs, based on the hierarchical nature of the design space. This system shell is intended to have the following capabilities: (1) interactive and system-guided design process to analyze design structure and to characterize design options, (2) to provide interactive and system-guided knowledge acquisition, classification, and retrieval to achieve machine learning, and (3) to build a flexible and forever expandable structure for knowledge-based system implementation.



1996 ◽  
Vol 118 (1) ◽  
pp. 7-20 ◽  
Author(s):  
M. M. Bernitsas ◽  
L. O. Garza-Rios

A design methodology is formulated to reveal the dependence of nonlinear slowmotion dynamics of spread mooring systems (SMS) on mooring line arrangement. For a given SMS configuration, catastrophe sets are developed in the parametric design space showing the dependence of stability boundaries and singularities of bifurcations on design variables. This approach eliminates the need for nonlinear simulations. For general SMS design, however, the designer relies on experience rather than scientific understanding of SMS nonlinear dynamics, due to the high number of design variables. Several numerical applications are used to demonstrate counterintuitive ways of improving SMS dynamics. The SMS design methodology formulated in this paper aims at providing fundamental understanding of the effects of mooring line arrangement and pretension on SMS horizontal plane dynamics. Thus, the first guidelines are developed to reduce trial and error in SMS design. The methodology is illustrated by comparing catastrophe sets for various SMS configurations with up to three mooring lines. Numerous examples for a barge and a tanker SMS which exhibit qualitatively different nonlinear dynamic behavior are provided.



Author(s):  
Zsolt Lattmann ◽  
Adam Nagel ◽  
Jason Scott ◽  
Kevin Smyth ◽  
Chris vanBuskirk ◽  
...  

We describe the use of the Cyber-Physical Modeling Language (CyPhyML) to support trade studies and integration activities in system-level vehicle designs. CyPhyML captures parameterized component behavior using acausal models (i.e. hybrid bond graphs and Modelica) to enable automatic composition and synthesis of simulation models for significant vehicle subsystems. Generated simulations allow us to compare performance between different design alternatives. System behavior and evaluation are specified independently from specifications for design-space alternatives. Test bench models in CyPhyML are given in terms of generic assemblies over the entire design space, so performance can be evaluated for any selected design instance once automated design space exploration is complete. Generated Simulink models are also integrated into a mobility model for interactive 3-D simulation.



Author(s):  
Martin Noack ◽  
Arnold Kühhorn ◽  
Markus Kober ◽  
Matthias Firl

AbstractThis paper presents a new FE-based stress-related topology optimization approach for finding bending governed flexible designs. Thereby, the knowledge about an output displacement or force as well as the detailed mounting position is not necessary for the application. The newly developed objective function makes use of the varying stress distribution in the cross section of flexible structures. Hence, each element of the design space must be evaluated with respect to its stress state. Therefore, the method prefers elements experiencing a bending or shear load over elements which are mainly subjected to membrane stresses. In order to determine the stress state of the elements, we use the principal stresses at the Gauss points. For demonstrating the feasibility of the new topology optimization approach, three academic examples are presented and discussed. As a result, the developed sensitivity-based algorithm is able to find usable flexible design concepts with a nearly discrete 0 − 1 density distribution for these examples.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meng Ee Wong ◽  
YingMin Lee

PurposeThis study explored in-service educators' experience of using the Wisconsin Assistive Technology Initiative (WATI) for assistive technology (AT) decision-making within Singapore schools.Design/methodology/approachThe study adopted a qualitative design. Eight educators across both mainstream and special education schools were introduced to the WATI framework which they subsequently employed as a trial experience for a student under their care. Written feedback gathered from participants was analysed to identify common issues and themes regarding the use of the WATI framework for AT decision-making.FindingsThe comprehensive consideration of a broad scope of different factors, provision of a structured process for AT decision-making, as well as a common language for use by different stakeholders emerged as key benefits of implementing the WATI. Challenges encountered include administrative struggles in gathering different stakeholders together, time and resource constraints and difficulties in loaning AT devices for trial use.Practical implicationsBased on educators' feedback, recommendations to facilitate the adoption of the WATI for AT decision-making within Singapore schools are discussed and considered. This study also highlights the need for greater AT instruction within both preservice and in-service teacher preparation programmes in Singapore.Originality/valueSchools in Singapore currently rarely adopt any frameworks in place to guide educators through a systematic process of AT consideration. It is anticipated that this study will spearhead and drive the adoption of systematic frameworks such as the WATI for better AT decision-making within Singapore schools.Peer reviewThe peer review history for this article is available at: https://publons.com/publon 10.1108/JET-03-2021-0015



Author(s):  
Nicolas Albarello ◽  
Jean-Baptiste Welcomme

The design of systems architectures often involve a combinatorial design-space made of technological and architectural choices. A complete or large exploration of this design space requires the use of a method to generate and evaluate design alternatives. This paper proposes an innovative approach for the design-space exploration of systems architectures. The SAMOA (System Architecture Model-based OptimizAtion) tool associated to the method is also introduced. The method permits to create a large number of various system architectures combining a set of possible components to address given system functions. The method relies on models that are used to represent the problem and the solutions and to evaluate architecture performances. An algorithm first synthesizes design alternatives (a physical architecture associated to a functional allocation) based on the functional architecture of the system, the system interfaces, a library of available components and user-defined design rules. Chains of components are sequentially added to an initially empty architecture until all functions are fulfilled. The design rules permit to guarantee the viability and validity of the chains of components and, consequently, of the generated architectures. The design space exploration is then performed in a smart way through the use of an evolutionary algorithm, the evolution mechanisms of which are specific to system architecting. Evaluation modules permit to assess the performances of alternatives based on the structure of the architecture model and the data embedded in the component models. These performances are used to select the best generated architectures considering constraints and quality metrics. This selection is based on the Pareto-dominance-based NSGA-II algorithm or, alternatively, on an interactive preference-based algorithm. Iterating over this evolution-evaluation-selection process permits to increase the quality of solutions and, thus, to highlight the regions of interest of the design-space which can be used as a base for further manual investigations. By using this method, the system designers have a larger confidence in the optimality of the adopted architecture than using a classical derivative approach as many more solutions are evaluated. Also, the method permits to quickly evaluate the trade-offs between the different considered criteria. Finally, the method can also be used to evaluate the impact of a technology on the system performances not only by a substituting a technology by another but also by adapting the architecture of the system.



Author(s):  
Anant Chawla ◽  
Joshua D. Summers

Morphological charts are widely recognized tools in engineering design applications and research. However, a literature gap exists in instructing the representation and exploration of morphological charts. In this paper, an experiment is conducted to understand how morphological charts are explored and what impact functional arrangement has on it. The experiment consisted of two problem statements, each with five different functional arrangements: 1) Most to Least Important Function, 2) Least to Most Important Function, 3) Input to Output Function, 4) Output to Input Function, and 5) Random. Sixty-seven junior mechanical engineering students were provided a prepopulated morphological chart and asked to generate integrated design concepts. The generated concepts were analyzed to determine how frequently a given means is selected, how much of the chart is explored, what is the sequence of exploration, and finally the influence of function ordering on them. Experimental results indicate a tendency to focus more on the initial columns of the chart irrespective of functional order. Moreover, the Most-to-Least-Important functional order results in higher chances and uniformity of design space exploration.



2003 ◽  
Vol 125 (5) ◽  
pp. 845-851 ◽  
Author(s):  
K. J. Daun ◽  
D. P. Morton ◽  
J. R. Howell

This paper presents an optimization methodology for designing radiant enclosures containing specularly-reflecting surfaces. The optimization process works by making intelligent perturbations to the enclosure geometry at each design iteration using specialized numerical algorithms. This procedure requires far less time than the forward “trial-and-error” design methodology, and the final solution is near optimal. The radiant enclosure is analyzed using a Monte Carlo technique based on exchange factors, and the design is optimized using the Kiefer-Wolfowitz method. The optimization design methodology is demonstrated by solving two industrially-relevant design problems involving two-dimensional enclosures that contain specular surfaces.



2021 ◽  
Author(s):  
J Rogers ◽  
Marc Aurel Schnabel ◽  
Tane Moleta

This paper presents the trilogy of virtual classifications, the speculative environment, the virtual inhabitant and the virtual built-form. These combine, generating a new realm of design within immersive architectural space, all to be designed relative to each other, this paper focuses on the speculative environment portion. This challenged computational design and representation through atmospheric filters, visible environment boundaries, materiality and audio experience. The speculative environment was generated manipulating the physical laws of the physical world, applied within the virtual space. The outcome provided a new spatial experience of architectural dynamics enhanced by detailed spatial qualities. Design concepts within this paper suggest at what immersive virtual reality can evolve into. Following an interconnective design methodology framework allowed a high level of complexity and richness to shine through the research case study throughout the process and final dissemination stages.



2021 ◽  
Author(s):  
J Rogers ◽  
Marc Aurel Schnabel ◽  
Tane Moleta

This paper presents the trilogy of virtual classifications, the speculative environment, the virtual inhabitant and the virtual built-form. These combine, generating a new realm of design within immersive architectural space, all to be designed relative to each other, this paper focuses on the speculative environment portion. This challenged computational design and representation through atmospheric filters, visible environment boundaries, materiality and audio experience. The speculative environment was generated manipulating the physical laws of the physical world, applied within the virtual space. The outcome provided a new spatial experience of architectural dynamics enhanced by detailed spatial qualities. Design concepts within this paper suggest at what immersive virtual reality can evolve into. Following an interconnective design methodology framework allowed a high level of complexity and richness to shine through the research case study throughout the process and final dissemination stages.



Sign in / Sign up

Export Citation Format

Share Document