Closed-Form Synthesis of Force-Generating Planar Four-Bar Linkages
Abstract This paper presents a technique for synthesizing four-bar linkages to produce a specified resisting force or torque. The resisting energy is provided by a weight acting on the other grounded link. The linkage serves as a nonlinear mechanical advantage function generator. Force and velocity synthesis methods have been extensively discussed in the literature. The general approach, however, has been to assume that the specified force or velocity occurs at a prescribed position. This results in the loss of design parameters that are being used unnecessarily to control position. In this application, force input to the linkage is specified as a function of only the input link position and the magnitude and direction of the weight force. Mechanical advantage synthesis can be achieved at as many as seven precision points. The method presented in this paper allows free selection of two parameters and viewing one infinity of solutions.