Hybrid Approach for Containment Problems

Author(s):  
Chan Yu ◽  
Souran Manoochehri

A hybrid method combining a genetic algorithms based containment algorithm with a complex mating algorithm is presented. The approach uses mating between a pair of objects as means to accelerate the packaging process. In this study, mating between two objects has been defined as positioning one object relative to others by merging common features that are assigned through mating conditions between them. A constrained move set is derived from the mating condition that allows the transformation of a component in each mating pair to be fully or partially constrained with respect to the other. By using mating in the packaging, the number of components to be placed can be reduced significantly and overall speed of the packaging process can also be improved. The hybrid method uses a genetic algorithm to search mating pairs and global positions of selected objects. The mating pair is mated first by a simple mating condition which is derived from geometric features of mating objects. If a proper mating is not obtained, the complex mating algorithm finds an optimal mating condition using Quasi-Newton method.

2002 ◽  
Vol 2 (3) ◽  
pp. 171-178
Author(s):  
Chan Yu ◽  
Souran Manoochehri

A genetic algorithm-based optimization method is proposed for solving the problem of nesting arbitrary shapes. Depending on the number of objects and the size of the search space, realizing an optimal solution within a reasonable time may not be possible. In this paper, a mating concept is introduced to reduce the solution time. Mating between two objects is defined as the positioning of one object relative to the other by merging common features that are assigned by the mating condition between them. A constrained move set is derived from a mating condition that allows the transformation of the object in each mating pair to be fully constrained with respect to the other. Properly mated objects can be placed together, thus reducing the overall computation time. Several examples are presented to demonstrate the efficiency of utilizing the mating concept to solve a nesting optimization problem.


2019 ◽  
Vol 1 (2) ◽  
pp. 67-73
Author(s):  
Mendil Samir ◽  
Aguili Taoufik

This article deals with a hybrid method combining the method of moments (MOM) with the general theory of diffraction (GTD). This hybrid approach is used to analyze antennas located near perfectly Bodies of arbitrary curved shape. Some examples, e.g. an antenna mounted near a perfect conductor cylinder with two plates, demonstrates that the hybrid approach is the most suitable technique for modeling large-scale objects and arbitrary shapes. This approach allows us to resolve the problem, that the other methods can’t solve it alone. Generally, random radiation locates on or near an arbitrary form, can be solved using this technique hence the strong advantages of our method.


Author(s):  
Hsu-Chieh Hu ◽  
Stephen F. Smith

We consider the problem of minimizing the the delay of jobs moving through a directed graph of service nodes. In this problem, each node may have several links and is constrained to serve one link at a time. As jobs move through the network, they can pass through a node only after they have been serviced by that node. The objective is to minimize the delay jobs incur sitting on queues waiting to be serviced. Two popular approaches to this problem are backpressure algorithm and schedule-driven control. In this paper, we present a hybrid approach of those two methods that incorporates the stability of queuing theory into the schedule-driven control. We then demonstrate how this hybrid method outperforms the other two in a real-time traffic signal control problem, where the nodes are traffic lights, the links are roads, and the jobs are vehicles. We show through simulations that, in scenarios with heavy congestion, the hybrid method results in 50% and 15% reductions in delay over schedule-driven control and backpressure respectively. A theoretical analysis also justifies our results.


BMC Zoology ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ansa E. Cobham ◽  
Christen K. Mirth

Abstract Background Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body. Main text Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics. Conclusion In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.


2013 ◽  
Vol 8 (1) ◽  
pp. 42-54
Author(s):  
Camille Carbonnaux

Since the 1990s, European judicial and normative institutions have paid particular attention to the competitive practices of public undertakings. Consequently, their regime is governed by a significant number of rules pursuing objectives appearing, a priori, contradictory. In fact, public undertakings may experience difficulties in their management. In this context, an approach of public competition law through the prism of fair competition can be very useful. Regarding the uniformity of its judgment, fair competition appears as an objective capable of coordinating rules and overcoming their contradictions. It thereby offers a global and coherent reading plan of all the legal translations of the European competitive order being of some practical importance. In illuminating the common features of the different legal aspects of competition, we can easily switch from one to the other. It therefore makes the European approach to competition more accessible and understandable. Furthermore, and most importantly, it leads to identifying legal opportunities and threats in a cross-disciplinary way. So, from a “Law & Management” perspective, it appears to be a precious tool for the management of public undertakings. Key words: European competition law, public undertakings, fair competition, “Management & law”.


2013 ◽  
Vol 13 (10) ◽  
pp. 26657-26698
Author(s):  
Y. Hu ◽  
S. Balachandran ◽  
J. E. Pachon ◽  
J. Baek ◽  
C. Ivey ◽  
...  

Abstract. A hybrid fine particulate matter (PM2.5) source apportionment approach based on a receptor-model (RM) species balance and species specific source impacts from a chemical transport model (CTM) equipped with a sensitivity analysis tool is developed to provide physically- and chemically-consistent relationships between source emissions and receptor impacts. This hybrid approach enhances RM results by providing initial estimates of source impacts from a much larger number of sources than are typically used in RMs, and provides source-receptor relationships for secondary species. Further, the method addresses issues of source collinearities, and accounts for emissions uncertainties. Hybrid method results also provide information on the resulting source impact uncertainties. We apply this hybrid approach to conduct PM2.5 source apportionment at Chemical Speciation Network (CSN) sites across the US. Ambient PM2.5 concentrations at these receptor sites were apportioned to 33 separate sources. Hybrid method results led to large changes of impacts from CTM estimates for sources such as dust, woodstove, and other biomass burning sources, but limited changes to others. The refinements reduced the differences between CTM-simulated and observed concentrations of individual PM2.5 species by over 98% when using a weighted least squared error minimization. The rankings of source impacts changed from the initial estimates, revealing that CTM-only results should be evaluated with observations. Assessment with RM results at six US locations showed that the hybrid results differ somewhat from commonly resolved sources. The hybrid method also resolved sources that typical RM methods do not capture without extra measurement information on unique tracers. The method can be readily applied to large domains and long (such as multi-annual) time periods to provide source impact estimates for management- and health-related studies.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3616-3620

The Developing enthusiasm for the field of opinion mining and its applications in various regions of information and also, sociology has activated numerous researchers to investigate the field The chance to catch the opinion of the overall public about get-togethers, political developments, organization systems, advertising efforts, and item inclinations has raised expanding enthusiasm of both scientific community (as a result of the energizing open difficulties) and the business world (due to the wonderful advantages for promoting and money related market expectation). Today, sentiment analysis investigation has its applications in a few unique situations. There are a decent number of organizations, both huge and little scale, that focuses on opinions and sentiments as a major aspect of their central goal. This work introduces hybrid approach that includes lexicon based approach and machine learning approach for extracting aspects and sentiments


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1621 ◽  
Author(s):  
Alfredo Nespoli ◽  
Emanuele Ogliari ◽  
Sonia Leva ◽  
Alessandro Massi Pavan ◽  
Adel Mellit ◽  
...  

We compare the 24-hour ahead forecasting performance of two methods commonly used for the prediction of the power output of photovoltaic systems. Both methods are based on Artificial Neural Networks (ANN), which have been trained on the same dataset, thus enabling a much-needed homogeneous comparison currently lacking in the available literature. The dataset consists of an hourly series of simultaneous climatic and PV system parameters covering an entire year, and has been clustered to distinguish sunny from cloudy days and separately train the ANN. One forecasting method feeds only on the available dataset, while the other is a hybrid method as it relies upon the daily weather forecast. For sunny days, the first method shows a very good and stable prediction performance, with an almost constant Normalized Mean Absolute Error, NMAE%, in all cases (1% < NMAE% < 2%); the hybrid method shows an even better performance (NMAE% < 1%) for two of the days considered in this analysis, but overall a less stable performance (NMAE% > 2% and up to 5.3% for all the other cases). For cloudy days, the forecasting performance of both methods typically drops; the performance is rather stable for the method that does not use weather forecasts, while for the hybrid method it varies significantly for the days considered in the analysis.


Author(s):  
Adam Roman ◽  
Michal Mnich

AbstractTest-driven development (TDD) is a popular design approach used by the developers with testing being the important software development driving factor. On the other hand, mutation testing is considered one of the most effective testing techniques. However, there is not so much research on combining these two techniques together. In this paper, we propose a novel, hybrid approach called TDD+M which combines test-driven development process together with the mutation approach. The aim was to check whether this modified approach allows the developers to write a better quality code. We verify our approach by conducting a controlled experiment and we show that it achieves better results than the sole TDD technique. The experiment involved 22 computer science students split into eight groups. Four groups (TDD+M) were using our approach, the other four (TDD) – a normal TDD process. We performed a cross-experiment by measuring the code coverage and mutation coverage for each combination (code of group X, tests from group Y). The TDD+M tests achieved better coverage on the code from TDD groups than the TDD tests on their own code (53.3% vs. 33.5% statement coverage and 64.9% vs. 37.5% mutation coverage). The TDD+M tests also found more post-release defects in the TDD code than TDD tests in the TDD+M code. The experiment showed that adding mutation into the TDD process allows the developers to provide better, stronger tests and to write a better quality code.


2018 ◽  
Vol 108 (6) ◽  
pp. 800-806
Author(s):  
D.D. Chaudhary ◽  
G. Mishra ◽  
Omkar

AbstractA recent study on ladybird,Menochilus sexmaculatus(Fabricius) demonstrates that males perform post-copulatory mate guarding in the form of prolonged mating durations. We investigated whether food resource fluctuation affects pre- and post-copulatory behaviour ofM. sexmaculatus. It has not been studied before in ladybirds. For this, adults were subjected to prey resource fluctuations sequentially at three levels: post-emergence (Poe; 10 days), pre-mating (Prm; 24 h) and post-mating (Pom; 5 days; only female). The food resource conditions at each level could be any one of scarce, optimal or abundant. Pre-copulatory and post-copulatory behaviour, and reproductive output were assessed. Post-emergence and pre-mating nutrient conditions significantly influenced the pre-copulatory behaviour. Males reared on scarce post-emergence conditions were found to require significantly higher number of mating attempts to establish mating unlike males in the other two food conditions. Under scarce post-emergence and pre-mating conditions, time to commencement of mating and latent period were high but opposite result was obtained for mate-guarding duration. Fecundity and per cent egg viability were more influenced by post-mating conditions, with scarce conditions stopping oviposition regardless of pre-mating and post-emergence conditions. Present results indicate that pre- and post-copulatory behaviour of ladybird is plastic in nature in response to food resource fluctuations.


Sign in / Sign up

Export Citation Format

Share Document