A Web-Based Process for Creating Parametric Cost Models for Product Design Trade Studies

Author(s):  
Alexandre E. Gue´rinot ◽  
Gregory M. Roach ◽  
Jordan J. Cox

This paper proposes a method for creating a parametric cost model established on the foundation of the product design generator methodology to provide early estimates of production cost and manufacturing cycle-time during preliminary design. This is accomplished by capturing the manufacturing process and knowledge associated with the product and its production. The relationships between design decisions and manufacturing costs are explicitly exposed making the cost estimation process reusable and repeatable. Designers can now clearly assess the profitability of their design, identify appropriate trade-offs between engineering requirements and production costs, and alter the design accordingly.

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2954 ◽  
Author(s):  
Sudheer Kumar Battula ◽  
Saurabh Garg ◽  
Ranesh Kumar Naha ◽  
Parimala Thulasiraman ◽  
Ruppa Thulasiram

Fog computing aims to support applications requiring low latency and high scalability by using resources at the edge level. In general, fog computing comprises several autonomous mobile or static devices that share their idle resources to run different services. The providers of these devices also need to be compensated based on their device usage. In any fog-based resource-allocation problem, both cost and performance need to be considered for generating an efficient resource-allocation plan. Estimating the cost of using fog devices prior to the resource allocation helps to minimize the cost and maximize the performance of the system. In the fog computing domain, recent research works have proposed various resource-allocation algorithms without considering the compensation to resource providers and the cost estimation of the fog resources. Moreover, the existing cost models in similar paradigms such as in the cloud are not suitable for fog environments as the scaling of different autonomous resources with heterogeneity and variety of offerings is much more complicated. To fill this gap, this study first proposes a micro-level compensation cost model and then proposes a new resource-allocation method based on the cost model, which benefits both providers and users. Experimental results show that the proposed algorithm ensures better resource-allocation performance and lowers application processing costs when compared to the existing best-fit algorithm.


Author(s):  
Jesse D. Peplinski ◽  
Janet K. Allen ◽  
Farrokh Mistree

Abstract How can the manufacturability of different product design alternatives be evaluated efficiently during the early stages of concept exploration? The benefits of such integrated product and manufacturing process design are widely recognized and include faster time to market, reduced development costs and production costs, and increased product quality. To reap these benefits fully, however, one must examine product/process trade-offs and cost/schedule/performance trade-offs in the early stages of design. Evaluating production cost and lead time requires detailed simulation or other analysis packages which 1) would be computationally expensive to run for every alternative, and 2) require detailed information that may or may not be available in these early design stages. Our approach is to generate response surfaces that serve as approximations to the analyses packages and use these approximations to identify robust regions of the design space for further exploration. In this paper we present a method for robust product and process exploration and illustrate this method using a simplified example of a machining center processing a single component. We close by discussing the implications of this work for manufacturing outsourcing, designing robust supplier chains, and ultimately designing the manufacturing enterprise itself.


Author(s):  
Elvira Albert ◽  
Jesús Correas ◽  
Pablo Gordillo ◽  
Guillermo Román-Díez ◽  
Albert Rubio

Abstract We present the main concepts, components, and usage of Gasol, a Gas AnalysiS and Optimization tooL for Ethereum smart contracts. Gasol offers a wide variety of cost models that allow inferring the gas consumption associated to selected types of EVM instructions and/or inferring the number of times that such types of bytecode instructions are executed. Among others, we have cost models to measure only storage opcodes, to measure a selected family of gas-consumption opcodes following the Ethereum’s classification, to estimate the cost of a selected program line, etc. After choosing the desired cost model and the function of interest, Gasol returns to the user an upper bound of the cost for this function. As the gas consumption is often dominated by the instructions that access the storage, Gasol uses the gas analysis to detect under-optimized storage patterns, and includes an (optional) automatic optimization of the selected function. Our tool can be used within an Eclipse plugin for which displays the gas and instructions bounds and, when applicable, the gas-optimized function.


Author(s):  
Krishna N. Jha ◽  
Andrea Morris ◽  
Ed Mytych ◽  
Judith Spering

Abstract Designing aircraft parts requires extensive coordination among multiple distributed design groups. Achieving such a coordination is time-consuming and expensive, but the cost of ignoring or minimizing it is much higher in terms of delayed and inferior quality products. We have built a multi-agent-based system to provide the desired coordination among the design groups, the legacy applications, and other resources during the preliminary design (PD) process. A variety of agents are used to model the various design and control functionalities. The agent-representation includes a formal representation of the task-structures. A web-based user-interface provides high-level interface to the users. The agents collaborate to achieve the design goals.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 473 ◽  
Author(s):  
Flor G. Ortiz-Gomez ◽  
Ramón Martínez ◽  
Miguel A. Salas-Natera ◽  
Andrés Cornejo ◽  
Salvador Landeros-Ayala

The concept of geostationary VHTS (Very High Throughput Satellites) is based on multibeam coverage with intensive frequency and polarization reuse, in addition to the use of larger bandwidths in the feeder links, in order to provide high capacity satellite links at a reduced cost per Gbps in orbit. The dimensioning and design of satellite networks based on VHTS imposes the analysis of multiple trade-offs to achieve an optimal solution in terms of cost, capacity, and the figure of merit of the user terminal. In this paper, we propose a new method for sizing VHTS satellite networks based on an analytical expression of the forward link CINR (Carrier-to-Interference-plus-Noise Ratio) that is used to evaluate the trade-off of different combinations of system parameters. The proposed method considers both technical and commercial requirements as inputs, including the constraints to achieve the optimum solution in terms of the user G/T, the number of beams, and the system cost. The cost model includes both satellite and ground segments. Exemplary results are presented with feeder links using Q/V bands, DVB-S2X and transmission methods based on CCM and VCM (Constant and Variable Coding and Modulation, respectively) in two scenarios with different service areas.


2012 ◽  
Vol 18 (3) ◽  
pp. 378-385 ◽  
Author(s):  
Ahmad Reza Sayadi ◽  
Ali Lashgari ◽  
Mohammad Majid Fouladgar ◽  
Miroslaw J. Skibniewski

Material loading is one of the most critical operations in earthmoving projects. A number of different equipment is available for loading operations. Project managers should consider different technical and economic issues at the feasibility study stage and try to select the optimum type and size of equipment fleet, regarding the production needs and project specifications. The backhoe shovel is very popular for digging, loading and flattening tasks. Adequate cost estimation is one of the most critical tasks in feasibility studies of equipment fleet selection. This paper presents two different cost models for the preliminary and detailed feasibility study stages. These models estimate the capital and operating cost of backhoe shovels using uni-variable exponential regression (UVER) as well as multi-variable linear regression (MVLR), based on principal component analysis. The UVER cost model is suitable for quick cost estimation at the early stages of project evaluation, while the MVLR cost function, which is more detailed, can be useful for the feasibility study stage. Independent variables of MVLR include bucket size, digging depth, dump height, weight and power. Model evaluations show that these functions could be a credible tool for cost estimations in prefeasibility and feasibility studies of mining and construction projects.


Author(s):  
Brian Sloan ◽  
Olubukola Tokede ◽  
Sam Wamuziri ◽  
Andrew Brown

Purpose – The main purpose of the study is to promote consideration of the issues and approaches available for costing sustainable buildings with a view to minimising cost overruns, occasioned by conservative whole-life cost estimates. The paper primarily looks at the impact of adopting continuity in whole-life cost models for zero carbon houses. Design/methodology/approach – The study embraces a mathematically based risk procedure based on the binomial theorem for analysing the cost implication of the Lighthouse zero-carbon house project. A practical application of the continuous whole-life cost model is developed and results are compared with existing whole-life cost techniques using finite element methods and Monte Carlo analysis. Findings – With standard whole-life costing, discounted present-value analysis tends to underestimate the cost of a project. Adopting continuity in whole-life cost models presents a clearer picture and profile of the economic realities and decision-choices confronting clients and policy-makers. It also expands the informative scope on the costs of zero-carbon housing projects. Research limitations/implications – A primary limitation in this work is its focus on just one property type as the unit of analysis. This research is also limited in its consideration of initial and running cost categories only. The capital cost figures for the Lighthouse are indicative rather than definitive. Practical implications – The continuous whole-life cost technique is a novel and innovative approach in financial appraisal […] Benefits of an improved costing framework will be far-reaching in establishing effective policies aimed at client acceptance and optimally performing supply chain networks. Originality/value – The continuous whole-life costing pioneers an experimental departure from the stereo-typical discounting mechanism in standard whole-life costing procedures.


1999 ◽  
Vol 103 (1026) ◽  
pp. 383-388 ◽  
Author(s):  
K. Gantois ◽  
A. J. Morris

Abstract The Paper describes a metal and composite recurrent cost model of a large civil aircraft wing structure for a multidisciplinary design, analysis and optimisation (MDO) environment. The work was part of a recent European MDO project (BE95-2056) which investigated methods for the integration of structures, aerodynamics, dynamics and manufacturing cost at the preliminary design stage. The paper discusses the cost modelling approach, which is based on parametric and process cost model methods, and the integration of the cost models into an MDO process. Results for the cost models are shown. A framework has been successfully developed which allows the incorporation of manufacturing cost models into an MDO environment. It allows a designer to evaluate cost changes with respect to specific design changes such as rib pitch, stringer pitch, wing area and wing sweep.


Author(s):  
Maira Bruck ◽  
Navid Goudarzi ◽  
Peter Sandborn

The cost of energy is an increasingly important issue in the world as renewable energy resources are growing in demand. Performance-based energy contracts are designed to keep the price of energy as low as possible while controlling the risk for both parties (i.e., the Buyer and the Seller). Price and risk are often balanced using complex Power Purchase Agreements (PPAs). Since wind is not a constant supply source, to keep risk low, wind PPAs contain clauses that require the purchase and sale of energy to fall within reasonable limits. However, the existence of those limits also creates pressure on prices causing increases in the Levelized Cost of Energy (LCOE). Depending on the variation in capacity factor (CF), the power generator (the Seller) may find that the limitations on power purchasing given by the utility (the Buyer) are not favorable and will result in higher costs of energy than predicted. Existing cost models do not take into account energy purchase limitations or variations in energy production when calculating an LCOE. A new cost model is developed to evaluate the price of electricity from wind energy under a PPA contract. This study develops a method that an energy Seller can use to negotiate delivery penalties within their PPA. This model has been tested on a controlled wind farm and with real wind farm data. The results show that LCOE depends on the limitations on energy purchase within a PPA contract as well as the expected performance characteristics associated with wind farms.


2017 ◽  
Vol 13 (2) ◽  
pp. 105
Author(s):  
Bagyo Mulyono ◽  
Paulus Setyo Nugroho

<p class="DRAbstrak">Cost estimation is the art of estimating the amount of cost required for an activity based on available information. The conceptual cost estimate is an early stage in planning a construction project. This estimate provides the cost that must be budgeted for a construction project. Cost conceptual estimates have low accuracy because the time of calculation and available information is limited. This study aims to obtain a conceptual model of the conceptual cost of short-spaced bridges. The method used is the cost index. The cost index is a figure indicating the cost per m2 of bridges at a given time. The required data are contract documents and drawings design that are built in 2012 - 2015 in Banyumas residency area. Span of bridge 4 - 38.8 meters and width of bridge 2 - 7 meters with caisson  foundation. The data were obtained from Dinas Bina Marga and Public Works Agency. The results showed that the conceptual cost model of reinforced concrete bridge with caisson foundation was BJiL = (100.540.56t2-404.528.636,58t + 406.914.286.088,58) x P x W, with t = year, P = span bridge, and W = bridge width. The error value of validation of this model is 2.31%.</p>


Sign in / Sign up

Export Citation Format

Share Document