scholarly journals A Micro-Level Compensation-Based Cost Model for Resource Allocation in a Fog Environment

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2954 ◽  
Author(s):  
Sudheer Kumar Battula ◽  
Saurabh Garg ◽  
Ranesh Kumar Naha ◽  
Parimala Thulasiraman ◽  
Ruppa Thulasiram

Fog computing aims to support applications requiring low latency and high scalability by using resources at the edge level. In general, fog computing comprises several autonomous mobile or static devices that share their idle resources to run different services. The providers of these devices also need to be compensated based on their device usage. In any fog-based resource-allocation problem, both cost and performance need to be considered for generating an efficient resource-allocation plan. Estimating the cost of using fog devices prior to the resource allocation helps to minimize the cost and maximize the performance of the system. In the fog computing domain, recent research works have proposed various resource-allocation algorithms without considering the compensation to resource providers and the cost estimation of the fog resources. Moreover, the existing cost models in similar paradigms such as in the cloud are not suitable for fog environments as the scaling of different autonomous resources with heterogeneity and variety of offerings is much more complicated. To fill this gap, this study first proposes a micro-level compensation cost model and then proposes a new resource-allocation method based on the cost model, which benefits both providers and users. Experimental results show that the proposed algorithm ensures better resource-allocation performance and lowers application processing costs when compared to the existing best-fit algorithm.

Author(s):  
Alexandre E. Gue´rinot ◽  
Gregory M. Roach ◽  
Jordan J. Cox

This paper proposes a method for creating a parametric cost model established on the foundation of the product design generator methodology to provide early estimates of production cost and manufacturing cycle-time during preliminary design. This is accomplished by capturing the manufacturing process and knowledge associated with the product and its production. The relationships between design decisions and manufacturing costs are explicitly exposed making the cost estimation process reusable and repeatable. Designers can now clearly assess the profitability of their design, identify appropriate trade-offs between engineering requirements and production costs, and alter the design accordingly.


2013 ◽  
Vol 59 (3) ◽  
pp. 229-235
Author(s):  
Muhammad Abrar ◽  
Xiang Gui ◽  
Amal Punchihewa

Abstract Relay-based cooperative wireless networks have been widely considered one of the cost-effective solutions to meet the demands in future wireless networks. In order to maximize the overall sum-rate while maintaining proportional fairness among users, we investigate different resource allocation algorithms in two-way relay networks with analog network coding (ANC) protocol and time division broadcast (TDBC) protocol. The algorithms investigated are different from traditional proportional fairness schemes in terms of fairness and computational complexity as we have applied Access Proportional Fairness (APF) and Minimum Rate Proportional Fairness (MRPF) along with load balancing at the relays. A MATLAB simulation has been performed and simulation results show the effectiveness of these algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Lingyun Lu ◽  
Tian Wang ◽  
Wei Ni ◽  
Kai Li ◽  
Bo Gao

This paper presents a suboptimal approach for resource allocation of massive MIMO-OFDMA systems for high-speed train (HST) applications. An optimization problem is formulated to alleviate the severe Doppler effect and maximize the energy efficiency (EE) of the system. We propose to decouple the problem between the allocations of antennas, subcarriers, and transmit powers and solve the problem by carrying out the allocations separately and iteratively in an alternating manner. Fast convergence can be achieved for the proposed approach within only several iterations. Simulation results show that the proposed algorithm is superior to existing techniques in terms of system EE and throughput in different system configurations of HST applications.


Author(s):  
Elvira Albert ◽  
Jesús Correas ◽  
Pablo Gordillo ◽  
Guillermo Román-Díez ◽  
Albert Rubio

Abstract We present the main concepts, components, and usage of Gasol, a Gas AnalysiS and Optimization tooL for Ethereum smart contracts. Gasol offers a wide variety of cost models that allow inferring the gas consumption associated to selected types of EVM instructions and/or inferring the number of times that such types of bytecode instructions are executed. Among others, we have cost models to measure only storage opcodes, to measure a selected family of gas-consumption opcodes following the Ethereum’s classification, to estimate the cost of a selected program line, etc. After choosing the desired cost model and the function of interest, Gasol returns to the user an upper bound of the cost for this function. As the gas consumption is often dominated by the instructions that access the storage, Gasol uses the gas analysis to detect under-optimized storage patterns, and includes an (optional) automatic optimization of the selected function. Our tool can be used within an Eclipse plugin for which displays the gas and instructions bounds and, when applicable, the gas-optimized function.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 000324-000341 ◽  
Author(s):  
Chet Palesko ◽  
Amy Palesko

2.5D and 3D packaging can provide significant size and performance advantages over other packaging technologies. However, these advantages usually come at a high price. Since 2.5D and 3D packaging costs are significant, today they are only used if no other option can meet the product requirements, and most of these applications are relatively low volume. Products such as high end FPGAs, high performance GPUs, and high bandwidth memory are great applications but none have volume requirements close to mobile phones or tablets. Without the benefit of volume production, the cost of 2.5D and 3D packaging could stay high for a long time. In this paper, we will provide cost model results of a complete 2.5D and 3D manufacturing process. Each manufacturing activity will be included and the key cost drivers will be analyzed regarding future cost reductions. Expensive activities that are well down the learning curve (RDL creation, CMP, etc.) will probably not change much in the future. However, expensive activities that are new to this process (DRIE, temporary bond/debond, etc.) provide good opportunities for cost reduction. A variety of scenarios will be included to understand how design characteristics impact the cost. Understanding how and why the dominant cost components will change over time is critical to accurately predicting the future cost of 2.5D and 3D packaging.


2012 ◽  
Vol 18 (3) ◽  
pp. 378-385 ◽  
Author(s):  
Ahmad Reza Sayadi ◽  
Ali Lashgari ◽  
Mohammad Majid Fouladgar ◽  
Miroslaw J. Skibniewski

Material loading is one of the most critical operations in earthmoving projects. A number of different equipment is available for loading operations. Project managers should consider different technical and economic issues at the feasibility study stage and try to select the optimum type and size of equipment fleet, regarding the production needs and project specifications. The backhoe shovel is very popular for digging, loading and flattening tasks. Adequate cost estimation is one of the most critical tasks in feasibility studies of equipment fleet selection. This paper presents two different cost models for the preliminary and detailed feasibility study stages. These models estimate the capital and operating cost of backhoe shovels using uni-variable exponential regression (UVER) as well as multi-variable linear regression (MVLR), based on principal component analysis. The UVER cost model is suitable for quick cost estimation at the early stages of project evaluation, while the MVLR cost function, which is more detailed, can be useful for the feasibility study stage. Independent variables of MVLR include bucket size, digging depth, dump height, weight and power. Model evaluations show that these functions could be a credible tool for cost estimations in prefeasibility and feasibility studies of mining and construction projects.


2020 ◽  
Vol 36 (4) ◽  
pp. 1527-1547
Author(s):  
Sathish Kumar Mani ◽  
Iyapparaja Meenakshisundaram

Author(s):  
Brian Sloan ◽  
Olubukola Tokede ◽  
Sam Wamuziri ◽  
Andrew Brown

Purpose – The main purpose of the study is to promote consideration of the issues and approaches available for costing sustainable buildings with a view to minimising cost overruns, occasioned by conservative whole-life cost estimates. The paper primarily looks at the impact of adopting continuity in whole-life cost models for zero carbon houses. Design/methodology/approach – The study embraces a mathematically based risk procedure based on the binomial theorem for analysing the cost implication of the Lighthouse zero-carbon house project. A practical application of the continuous whole-life cost model is developed and results are compared with existing whole-life cost techniques using finite element methods and Monte Carlo analysis. Findings – With standard whole-life costing, discounted present-value analysis tends to underestimate the cost of a project. Adopting continuity in whole-life cost models presents a clearer picture and profile of the economic realities and decision-choices confronting clients and policy-makers. It also expands the informative scope on the costs of zero-carbon housing projects. Research limitations/implications – A primary limitation in this work is its focus on just one property type as the unit of analysis. This research is also limited in its consideration of initial and running cost categories only. The capital cost figures for the Lighthouse are indicative rather than definitive. Practical implications – The continuous whole-life cost technique is a novel and innovative approach in financial appraisal […] Benefits of an improved costing framework will be far-reaching in establishing effective policies aimed at client acceptance and optimally performing supply chain networks. Originality/value – The continuous whole-life costing pioneers an experimental departure from the stereo-typical discounting mechanism in standard whole-life costing procedures.


Sign in / Sign up

Export Citation Format

Share Document