Identification of Nonlinear and Chaotic Behavior in Model-Scale Liquefied Natural Gas (LNG) Carrier Experimental Data

Author(s):  
Leigh S. McCue ◽  
Armin W. Troesch

This paper presents the results of an experimental study simulating the behavior of LNG carriers with partially filled tanks exposed to beam seas. Details of the experimental model and method of data collection are presented. Additionally, surrogate data testing is employed to demonstrate nonlinearity in vessel roll time series. Lastly, Lyapunov exponent calculations are performed to detect chaotic behavior resulting from nonlinear vessel motions coupled with the dynamics of fluid sloshing in on-board tanks. The nonlinear time series analysis programs contained in the TISEAN package [1] are used extensively throughout this work.

Author(s):  
Kevin D. Murphy ◽  
Lawrence N. Virgin ◽  
Stephen A. Rizzi

Abstract Experimental results are presented which characterize the dynamic response of homogeneous, fully clamped, rectangular plates to narrow band acoustic excitation and uniform thermal loads. Using time series, pseudo-phase projections, power spectra and auto-correlation functions, small amplitude vibrations are considered about both the pre- and post-critical states. These techniques are then employed to investigate the snap-through response. The results for snap-through suggest that the motion is temporally complex and a Lyapunov exponent calculation confirms that the motion is chaotic. Finally, a snap-through boundary is mapped in the (ω, SPL) parameter space separating the regions of snap-through and no snap-through.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
F. D. Marques ◽  
R. M. G. Vasconcellos

This work presents the analysis of nonlinear aeroelastic time series from wing vibrations due to airflow separation during wind tunnel experiments. Surrogate data method is used to justify the application of nonlinear time series analysis to the aeroelastic system, after rejecting the chance for nonstationarity. The singular value decomposition (SVD) approach is used to reconstruct the state space, reducing noise from the aeroelastic time series. Direct analysis of reconstructed trajectories in the state space and the determination of Poincaré sections have been employed to investigate complex dynamics and chaotic patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincaré mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents.


Fractals ◽  
2006 ◽  
Vol 14 (01) ◽  
pp. 27-35 ◽  
Author(s):  
TOMOYA SUZUKI ◽  
TOHRU IKEGUCHI ◽  
MASUO SUZUKI

Iterative function systems are often used for investigating fractal structures. The method is also referred as Chaos Game Representation (CGR), and is applied for representing characteristic structures of DNA sequences visually. In this paper, we proposed an original way of plotting CGR to easily confirm the property of the temporal evaluation of a time series. We also showed existence of spurious characteristic structures of time series, if we carelessly applied the CGR to real time series. We revealed that the source of spurious identification came from non-uniformity of the frequency histograms of the time series, which is often the case of analyzing real time series. We also showed how to avoid such spurious identification by applying the method of surrogate data and introducing conditional probabilities of the time series.


2014 ◽  
Vol 21 (1) ◽  
pp. 127-142 ◽  
Author(s):  
B. O. Ogunsua ◽  
J. A. Laoye ◽  
I. A. Fuwape ◽  
A. B. Rabiu

Abstract. The deterministic chaotic behavior and dynamical complexity of the space plasma dynamical system over Nigeria are analyzed in this study and characterized. The study was carried out using GPS (Global Positioning System) TEC (Total Electron Content) time series, measured in the year 2011 at three GPS receiver stations within Nigeria, which lies within the equatorial ionization anomaly region. The TEC time series for the five quietest and five most disturbed days of each month of the year were selected for the study. The nonlinear aspect of the TEC time series was obtained by detrending the data. The detrended TEC time series were subjected to various analyses for phase space reconstruction and to obtain the values of chaotic quantifiers like Lyapunov exponents, correlation dimension and also Tsallis entropy for the measurement of dynamical complexity. The observations made show positive Lyapunov exponents (LE) for both quiet and disturbed days, which indicates chaoticity, and for different days the chaoticity of the ionosphere exhibits no definite pattern for either quiet or disturbed days. However, values of LE were lower for the storm period compared with its nearest relative quiet periods for all the stations. The monthly averages of LE and entropy also show no definite pattern for the month of the year. The values of the correlation dimension computed range from 2.8 to 3.5, with the lowest values recorded at the storm period of October 2011. The surrogate data test shows a significance of difference greater than 2 for all the quantifiers. The entropy values remain relatively close, with slight changes in these values during storm periods. The values of Tsallis entropy show similar variation patterns to those of Lyapunov exponents, with a lot of agreement in their comparison, with all computed values of Lyapunov exponents correlating with values of Tsallis entropy within the range of 0.79 to 0.81. These results show that both quantifiers can be used together as indices in the study of the variation of the dynamical complexity of the ionosphere. The results also show a strong play between determinism and stochasticity. The behavior of the ionosphere during these storm and quiet periods for the seasons of the year are discussed based on the results obtained from the chaotic quantifiers.


Fractals ◽  
2006 ◽  
Vol 14 (02) ◽  
pp. 125-131 ◽  
Author(s):  
A. HACINLIYAN ◽  
Y. SKARLATOS ◽  
H. A. YILDIRIM ◽  
G. SAHIN

Chaotic behavior in the transient current through thin Aluminum-PMMA-Aluminum films has been analyzed for times ranging up to 30,000s, in the temperature range 293–363K for applied voltages in the range 10–80V. Time series analysis reveals a positive Lyapunov exponent consistently and reproducibly throughout this range. Power law relaxation as reflected by the autocorrelation function and the positive Lyapunov exponent show parallel behaviors as a function of applied electric field.


In most studies on dynamics of time series financial data, the absence of chaotic behavior is generally observed. However, this theory is not yet established in the dynamics of foreign exchange rates. Conflicting claims of presence and absence of chaos in foreign exchange rates open door for further investigation considering various deterministic factors. This work examines the dynamics of exchange rate of the Philippine Peso against selected foreign currencies. Time series data were collected for eight (8) of Philippine’s top trading partners as categorized according to economic condition. The data obtained with permission from the Central Bank of the Philippines covered the years 2013 to 2017. Data sets were plotted revealing non-linear movement of Philippine exchange rates against time. The foreign exchange rate time series obtained per currency were examined for chaotic behavior by computing the Largest Lyapunov Exponents (LLE). A positive Lyapunov exponent is an indication of sensitivity dependence, i.e, a chaotic dynamics; whereas, a negative Lyapunov exponent indicates otherwise. Computed LLE’s varied per currency but all were found to be negative. Therefore, using the Largest Lyapunov Exponent Test (LLE), analysis of the time series of Philippine foreign exchange rates shows little evidence of chaotic patterns.


1994 ◽  
Vol 1 (2/3) ◽  
pp. 145-155 ◽  
Author(s):  
Z. Vörös ◽  
J. Verö ◽  
J. Kristek

Abstract. A detailed nonlinear time series analysis has been made of two daytime geomagnetic pulsation events being recorded at L'Aquila (Italy, L ≈ 1.6) and Niemegk (Germany, L ≈ 2.3). Grassberger and Procaccia algorithm has been used to investigate the dimensionality of physical processes. Surrogate data test and self affinity (fractal) test have been used to exclude coloured noise with power law spectra. Largest Lyapunow exponents have been estimated using the methods of Wolf et al. The problems of embedding, stability of estimations, spurious correlations and nonlinear noise reduction have also been discussed. The main conclusions of this work, which include some new results on the geomagnetic pulsations, are (1) that the April 26, 1991 event, represented by two observatory time series LAQ1 and NGK1 is probably due to incoherent waves; no finite correlation dimension was found in this case, and (2) that the June 18, 1991 event represented by observatory time series LAQ2 and NGK2, is due to low dimensional nonlinear dynamics, which include deterministic chaos with correlation dimension D2(NGK2) = 2.25 ± 0.05 and D2(NDK2) = 2.02 ± 0.03, and with positive Lyapunov exponents λmax (LAQ2) = 0.055 ± 0.003 bits/s and λmax (NGK2) = 0.052 ± 0.003 bits/s; the predictability time in both cases is ≈ 13 s.


2002 ◽  
Vol 7 (1) ◽  
pp. 41-52 ◽  
Author(s):  
A. M. López Jiménez ◽  
C. Camacho Martínez Vara de Rey ◽  
A. R. García Torres

The literature about non-linear dynamics offers a few recommendations, which sometimes are divergent, about the criteria to be used in order to select the optimal calculus parameters in the estimation of Lyapunov exponents by direct methods. These few recommendations are circumscribed to the analysis of chaotic systems. We have found no recommendation for the estimation ofλstarting from the time series of classic systems. The reason for this is the interest in distinguishing variability due to a chaotic behavior of determinist dynamic systems of variability caused by white noise or linear stochastic processes, and less in the identification of non-linear terms from the analysis of time series. In this study we have centered in the dependence of the Lyapunov exponent, obtained by means of direct estimation, of the initial distance and the time evolution. We have used generated series of chaotic systems and generated series of classic systems with varying complexity. To generate the series we have used the logistic map.


Sign in / Sign up

Export Citation Format

Share Document