Vibration Control Using Connected Control Device for Two Identical Structures Arranged in Parallel

Author(s):  
Kiyofumi Fujimura ◽  
Kazuya Makita ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper deals with vibration control using the optimal design strategy of the connected control device for flexible structures with same dynamic properties. One of the authors had already proved effectiveness of connected control method for vibration control of flexible structures arranged in parallel. However, its control performance is degraded as the natural frequencies of structures become closer. To overcome this problem, the authors present a modified control mechanism in which the actuators are connected to the structures with differences in its connecting position by using long arms named “supporting structures”. However, the optimal design strategy for vibration control device has not been established yet. In this report, the optimal design strategy of passive control is presented. Computer simulations and the experiments are carried out and the effectiveness of the presented vibration control designed by the connected control device is confirmed.

Author(s):  
Dajun Wang ◽  
Quan Wang ◽  
A. Y. T. Leung

Abstract Most of the available vibration control methods for flexible structures are based on the modal control method, which, however, sometimes meets with problems. For examples, the problem of spillover has not been solved adequately. And, for flexible large space structures with closely spaced natural frequencies, it is very difficult to use modal method to treat vibration control problems because the modes corresponding to closely spaced and repeated frequencies can not be computed accurately. In recent years, the method of structural wave control has been developed, but it has not been studied sufficiently. The object of this paper is an attempt to solve some of the existing problems raised due to the application of the modal control method. A wave control method — the method of successive decrease is set up at first, which is aimed at one harmonic wave. Then, a new design method in wave control is proposed, based on the above method. The problem of control spillover is analyzed and the concept of harmonic wave filter is introduced. As an example, the problem of the control of structures with closely spaced natural frequencies is treated by both the method of modal control and the method of successive decrease. The numerical results show that the method of successive decrease is more effective than the method of modal control. It proves that the method of successive decrease and the concept of harmonic wave filter is promising in solving the problems of structural control.


Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Akira Fukukita ◽  
Katsuaki Sunakoda

We address a simultaneous optimal design problem of a semi-active control law and design parameters in a vibration control device for civil structures. The Vibration Control Device (VCD) that is being developed by authors is used as the semi-active control device in the present paper. The VCD is composed of a mechanism of a ball screw with a flywheel for the inertial resistance force and an electric motor with an electric circuit for the damping resistance force. A new bang-bang type semi-active control law referred to as Inverse Lyapunov Approach is proposed as the semi-active control law. In the Inverse Lyapunov Approach the Lyapunov function is searched so that performance measures in structural vibration control are optimized in the premise of the bang-bang type semi-active control based on the Lyapunov function. The design parameters to determine the Lyapunov function and the design parameters of the VCD are optimized for the good performance of the semi-active control system. The Genetic Algorithm is employed for the optimal design.


Author(s):  
Cheng Zhang ◽  
Jian-run Zhang ◽  
Xi Lu

The weak dynamic stiffness of thin plate is one of the important factors that limit the use of thin plate. Improving the dynamic stiffness of thin plate is one of the effective methods for the vibration control of thin plate. In this paper, the influence of pre-stress on the vibration characteristics of thin plate is studied. A vibration control method of thin plate based on pre-stress is proposed. The vibration differential equation of quadrate thin plate under pre-stressing is established. Using the Galerkin principle, the natural frequencies corresponding to the shape functions of the quadrate thin plates under pre-stressing in different distribution forms are obtained. By comparison, it is found that pre-stressing on the thin plate can change the dynamic stiffness of thin plate. In particular, tensile stress can increase the dynamic stiffness of thin plate while compressive stress can reduce the dynamic stiffness of the thin plate. The greater the pre-stress, the more obvious the effect. In the end, the requirements of the pre-stress distribution which can improve the dynamic stiffness of thin plate effectively are derived.


2019 ◽  
Vol 25 (6) ◽  
pp. 1133-1147 ◽  
Author(s):  
Francielly Elizabeth de Castro Silva ◽  
Carlos Alberto Bavastri

Dynamic vibration absorbers are simple mechanical devices that are attached to a structure aiming at reducing vibration levels. Designing such devices for vibration control of mechanical systems using viscoelastic materials results in low costs, easy construction, and higher efficacy due to their ability to dissipate vibration energy. In this context, the present study aims at developing a methodology for an optimal design of a set of viscoelastic dynamic absorbers considering their natural frequencies, the positions to attach them onto the structure to be controlled, and the viscoelastic materials as variables to be optimized for different working temperatures. The optimal configuration is obtained by applying a hybrid optimization technique, which uses genetic algorithms (considering continuous and discrete variables in the same design vector) aiming at approximating the global minimum point and, subsequently, a nonlinear programming method (simplex based on the Nelder–Mead method) to perform a local search. An example of dynamic absorber design to reduce vibration levels in a one-degree-of-freedom (DOF) system and on a steel plate (multiple-DOFs) is presented. The results show the efficacy of the methodology for passive control of vibrations acting on a broadband of frequencies and different temperatures.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kazuhiko Hiramoto

A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with the semiactive control device. A design method to determine the active control input and the command signal to drive the semiactive control device based on the one-step prediction of the control output is proposed. A simulation example of a control system design for a benchmark building is presented to show the effectiveness of the proposed control framework.


2007 ◽  
Vol 133 (12) ◽  
pp. 1247-1257 ◽  
Author(s):  
K. Makita ◽  
R. E. Christenson ◽  
K. Seto ◽  
T. Watanabe

Author(s):  
J C Niu ◽  
A Y T Leung ◽  
C W Lim ◽  
P Q Ge

This paper presents a novel general model for complex flexible coupled systems. In this model, parallel structures of force actuators and passive spring isolators are installed between the machine and the foundation, and some moment actuators such as piezoelectric patches are installed on the flexible foundation whose vibration cancellation feature is the key object of vibration control. This model combines active and passive control, force and moment control into a single unit to achieve the efficient vibration control of flexible structures by multiple approaches. The state-space governing equations of the coupled system are deduced. Based on the description of the state-space equation of the coupled system, the transmission paths for the power flow transmitted into the foundation are discussed in the frequency domain, and then combined into a single function. The function includes two parts: the passive and active terms, which can be conveniently employed in an optimal control strategy to achieve power flow control. The transmission characteristics of the power flow by optimal control are discussed in detail. Numerical simulations are presented to show that both force and moment controls in the analytical model can achieve substantial vibration cancellation.


Author(s):  
Saeed Hosseinaei ◽  
Mohammad Reza Ghasemi ◽  
Sadegh Etedali

Vibration control devices have recently been used in structures subjected to wind and earthquake excitations. The optimal design problems of the passive control device and the feedback gain matrix of the controller for the seismic-excited structures are some attractive problems for researches to develop optimization algorithms with the advancement in terms of simplicity, accuracy, speed, and efficacy. In this paper, a new modified teaching–learning-based optimization (TLBO) algorithm, known as MTLBO, is proposed for the problems. For some benchmark optimization functions and constrained engineering problems, the validity, efficacy, and reliability of the MTLBO are firstly assessed and compared to other optimization algorithms in the literature. The undertaken statistical indicate that the MTLBO performs better and reliable than some other algorithms studied here. The performance of the MTLBO will then be explored for two passive and active structural control problems. It is concluded that the MTLBO algorithm is capable of giving better results than conventional TLBO. Hence, its utilization as a simple, fast, and powerful optimization tool to solve particular engineering optimization problems is recommended.


Sign in / Sign up

Export Citation Format

Share Document