Development of Wood Grain Pattern Design System

Author(s):  
Satoshi Shibasaki ◽  
Hideki Aoyama

Various approaches for generating woodgrain patterns using computer graphics have been proposed so far. However, the generation of various woodgrain patterns with conventional methods is difficult due to the need for the adjustment of numerous parameters to express a real woodgrain pattern. In this paper, a new mathematical approach for generating woodgrain patterns is proposed. Virtual trees are generated by simulating tree growing based on past actual weather information obtained from public organizations, and woodgrain patterns are then acquired by cutting the trunks of the virtual trees. In order to simulate tree growing, growth models of tree are constructed in consideration of dendrological characteristics and environmental conditions. Growth of tree is influenced by various environmental factors, such as sunlight, temperature, carbon dioxide concentration, wind, precipitation, soil nutrient, inclination of ground, survival amongst surrounding trees, etc. With this system, the growth model of trees is constructed based on precipitation, temperature, sunlight, and inclination of ground, which especially have strong effects on tree growth. With this approach, various types of virtual trees can be obtained by changing growth conditions such as period and location of growth without the need to reset complicated parameters of tree species, and then the virtual trees can be cut at arbitrary areas, thus allowing a variety of woodgrain patterns to be easily generated by one parameter setup.

2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
Cristián Gabriel Sánchez ◽  
Esteban Vöhringer-Martinez

<div> <div> <div> <p>Nowadays, the search of efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf -SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). Chemical and electronic properties of the proposed SiQDs have been studied with Density Functional Theory (DFT) and Density Functional Tight-Binding (DFTB) approach along with a Time-Dependent model based on the DFTB (TD-DFTB) framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf -SiQDs for photochemically activated carbon dioxide fixation. </p> </div> </div> </div>


2021 ◽  
Vol 54 (3) ◽  
pp. 231-243
Author(s):  
Chao Liu ◽  
Zhenghua Hu ◽  
Rui Kong ◽  
Lingfei Yu ◽  
Yuanyuan Wang ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karolina Kula ◽  
Agnieszka Kącka-Zych ◽  
Agnieszka Łapczuk-Krygier ◽  
Radomir Jasiński

Abstract The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.


Sign in / Sign up

Export Citation Format

Share Document