Performance Mapping and Motion Simulation of a 4UPS+PU Redundantly Actuated Parallel Manipulator

Author(s):  
Zhen Gao ◽  
Dan Zhang

In this paper, a new 4UPS+PU redundantly actuated parallel manipulator is proposed. This mechanism possesses three degrees of freedom (DOF), one translation and two rotations. Different from general parallel manipulators, a passive leg is connected to both centers of the base and the moving platform to constrain the unwanted motion. The mobility study and inverse kinematic analysis are conducted. The reachable workspace is generated with boundary-searching based discretization method. The local and global performance indices including stiffness and dexterity and their atlas are investigated in details. Comprehensive simulation of kinematics, dynamics and proportional-integral-derivative (PID) position control are implemented based on Adams to evaluate and testify the high operational capacity and well motion characteristics.

Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Özgün Selvi

SUMMARY Overconstrained manipulators in lower subspaces with unique motions can be created and analyzed. However, far too little attention has been paid to creating a generic method for overconstrained manipulators kinematic analysis. This study aimed to evaluate a generic methodology for kinematic analysis of overconstrained parallel manipulators with partial subspaces (OPM-PS) using decomposition to parallel manipulators (PMs) in lower subspaces. The theoretical dimensions of the method are depicted, and the use of partial subspace for overconstrained manipulators is portrayed. The methodology for the decomposition method is described and exemplified by designing and evaluating the method to two overconstrained manipulators with 5 degrees of freedom (DoF) and 3 DoF. The inverse kinematic analysis is detailed with position analysis and Jacobian along with the inverse velocity analysis. The workspace analysis for the manipulators using the methodology is elaborated with numerical results. The results of the study show that OPM-PS can be decomposed into PMs with lower subspace numbers. As imaginary joints are being utilized in the proposed methodology, it will create additional data to consider in the design process of the manipulators. Thus, it becomes more beneficial in design scenarios that include workspace as an objective.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Long Li ◽  
Chengjun Wang ◽  
Hongtao Wu

In order to meet the requirement of continuous pouring in many varieties and small batches in casting production, a mobile heavy load pouring robot is developed based on a new 4-UPU parallel mechanism due to its strong carrying capacity. Firstly, the instantaneous motion characteristics of the novel 4-UPU parallel mechanism with four degrees of freedom (DOF) are analyzed using screw theory. By using the geometric method, both the forward and inverse kinematic solutions of the proposed robot system are given out. Secondly, based on a common pouring ladle, the volume change of pouring liquid in pouring process and the relationship between tilting angular velocity and flow rate are analyzed, and the results show that the shape of the ladle and the design of the pouring mouth have great influence on the tilting model. It is an important basis for the division of the sectional model. Finally, a numerical example is given to verify the effectiveness of the developed tilting model. The mapping relation between the tilting model and the parallel mechanism shows that the pouring flow can be adjusted by controlling the movement of parallel manipulator. The research of this paper provides an important theoretical basis for the position control of mobile heavy load pouring robot and the research of pouring speed control.


2016 ◽  
Vol 40 (2) ◽  
pp. 139-154 ◽  
Author(s):  
Joshua K. Pickard ◽  
Juan A. Carretero

This paper deals with the wrench workspace (WW) determination of parallel manipulators. The WW is the set of end-effector poses (positions and orientations) for which the active joints are able to balance a set of external wrenches acting at the end-effector. The determination of the WW is important when selecting an appropriate manipulator design since the size and shape of the WW are dependent on the manipulator’s geometry (design) and selected actuators. Algorithms for the determination of the reachable workspace and the WW are presented. The algorithms are applicable to manipulator architectures utilizing actuators with positive and negative limits on the force/torque they can generate, as well as cable-driven parallel manipulator architectures which require nonnegative actuator limits to maintain positive cable tensions. The developed algorithms are demonstrated in case studies applied to a cable-driven parallel manipulator with 2-degrees-of-freedom and three cables and to a 3-RRR parallel manipulator. The approaches used in this paper provide guaranteed results and are based on methods utilizing interval analysis techniques for the representation of end-effector poses and design parameters.


Author(s):  
Haibo Qu ◽  
Sheng Guo ◽  
Ying Zhang

This paper presents a comparative study of the kinematics and torque distribution performance of a nonredundant 3-RUU and a redundantly actuated 4-RUU (R: revolute joint, U: universal joint) translational parallel manipulators. First, the reason for unexpected rotations is analyzed based on screw theory and a redundantly actuated 4-RUU translational parallel manipulator is presented to eliminate the unexpected rotations. Then, the degrees of freedom, inverse kinematics, Jacobian matrices, and workspace of 3-RUU and 4-RUU parallel manipulators are analyzed. Finally, a comparative study of torque distribution is performed. The results show that the redundantly actuated 4-RUU parallel manipulator can overcome the unexpected rotations and possesses an improved torque distribution, compared with the nonredundant 3-RUU parallel manipulator.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Lingmin Xu ◽  
Qinchuan Li ◽  
Ningbin Zhang ◽  
Qiaohong Chen

Parallel manipulators (PMs) with redundant actuation are attracting increasing research interest because they have demonstrated improved stiffness and fewer singularities. This paper proposes a new redundantly actuated parallel manipulator that has three degrees-of-freedom (DOFs) and four limbs. The proposed manipulator is a 2UPR-2PRU parallel manipulator (where P represents an actuated prismatic joint, R represents a revolute joint, and U represents a universal joint) that is actuated using four prismatic joints; two of these joints are mounted on the base to reduce the movable mass. Mobility analysis shows that the moving platform has two rotational DOFs and one translational DOF. First, the inverse displacement solution, velocity, and singularity analyses are discussed. Next, the local transmission index (LTI) and the good transmission workspace are used to evaluate the motion/force transmissibility of the 2UPR-2PRU parallel manipulator. Finally, the parameter-finiteness normalization method (PFNM) is used to produce an optimal design that considers the good transmission workspace. It is thus shown that the motion/force transmission of the proposed manipulator is improved by optimizing the link parameters.


Author(s):  
Kemal Cem Kose ◽  
M Kemal Ozgoren ◽  
Ferzende Tekce ◽  
Nimeti Doner

This paper presents an original rehabilitative robotic walking simulation device. As a novel feature, it can duplicate the walking motion of the feet completely by including the motion of the metatarsophalangeal joints as well. It is also adjustable to different foot sizes and gait parameters such as speed, step length, and foot elevation. The presented device comprises two identical mechanisms that simulate the right and left feet. Each mechanism is designed as a planar parallel manipulator with three degrees of freedom and thus its platform (i.e. foot plate) can duplicate the sagittal-plane motion of a foot completely. A prototype of the device is already built, patented, and tested by several people, two of whom are physiotherapists. In the paper, the inverse and forward kinematic analyses of each parallel manipulator are also presented. The inverse kinematic analysis is carried out based on a typical gait cycle data of a healthy person gathered from the related literature. The results of the inverse kinematic analysis are then used as reference trajectory data in testing the device with different healthy people at different speeds.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


Author(s):  
Ethan Stump ◽  
Vijay Kumar

While there is extensive literature available on parallel manipulators in general, there has been much less attention given to cable-driven parallel manipulators. In this paper, we address the problem of analyzing the reachable workspace using the tools of semi-definite programming. We build on earlier work [1, 2] done using similar techniques by deriving limiting conditions that allow us to compute analytic expressions for the boundary of the reachable workspace. We illustrate this computation for a planar parallel manipulator with four actuators.


Author(s):  
Damien Chablat ◽  
Philippe Wenger

Abstract The goal of this paper is to define the n-connected regions in the Cartesian workspace of fully-parallel manipulators, i.e. the maximal regions where it is possible to execute point-to-point motions. The manipulators considered in this study may have multiple direct and inverse kinematic solutions. The N-connected regions are characterized by projection, onto the Cartesian workspace, of the connected components of the reachable configuration space defined in the Cartesian product of the Cartesian space by the joint space. Generalized octree models are used for the construction of all spaces. This study is illustrated with a simple planar fully-parallel manipulator.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Sign in / Sign up

Export Citation Format

Share Document