Tetrahedral Mesh-Based Embodiment Design

Author(s):  
Sebastian Pena Serna ◽  
Andre Stork ◽  
Dieter W. Fellner

The engineering design is a systematic approach implemented in the product development process, which is composed of several phases and supported by different tools. Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) tools are particularly dedicated to the embodiment phase and these enable engineers to design and analyze a potential solution. Nonetheless, the lack of integration between CAD and CAE restricts the exploration of design variations. Hence, we aim at incorporating functionalities of a CAD system within a CAE environment, by means of building a high level representation of the mesh and allowing the engineer to handle and manipulate semantic features, avoiding the direct manipulation of single elements. Thus, the engineer will be able to perform extruding, rounding or dragging operations regardless of geometrical and topological limitations. We present in this paper, the intelligence that a simulating mesh needs to support, in order to enable such operations.

Author(s):  
Colin Chong ◽  
Kiyoshi Sogabe ◽  
Kosuke Ishii

Abstract This paper addresses the problem of balancing rotational plastic parts during the early stages of design. The study develops an interactive methodology that uses a solid modeling CAD system and considers injection molding concerns simultaneously with static and dynamic balance. The Transfer Matrix Method evaluates the dynamic characteristics by predicting the approximate critical speed of the part. Design Compatibility Analysis (DCA) checks for injection molding guidelines. Using these evaluation modules interactively, designers can develop a functional and manufacturable part quickly.


Author(s):  
Xun Xu

One of the key activities in any product design process is to develop a geometric model of the product from the conceptual ideas, which can then be augmented with further engineering information pertaining to the application area. For example, the geometric model of a design may be developed to include material and manufacturing information that can later be used in computer-aided process planning and manufacturing (CAPP/CAM) activities. A geometric model is also a must for any engineering analysis, such as finite elopement analysis (FEA). In mathematic terms, geometric modelling is concerned with defining geometric objects using computational geometry, which is often, represented through computer software or rather a geometric modelling kernel. Geometry may be defined with the help of a wire-frame model, surface model, or solid model. Geometric modelling has now become an integral part of any computer-aided design (CAD) system. In this chapter, various geometric modelling approaches, such as wire-frame, surface, and solid modelling will be discussed. Basic computational geometric methods for defining simple entities such as curves, surfaces, and solids are given. Concepts of parametric, variational, history-based, and history-free CAD systems are explained. These topics are discussed in this opening chapter because (a) CAD was the very first computer-aided technologies developed and (b) its related techniques and methods have been pervasive in the other related subjects like computer-aided manufacturing. This chapter only discusses CAD systems from the application point of view; CAD data formats and data exchange issues are covered in the second chapter.


Author(s):  
Aditya Balu ◽  
Sambit Ghadai ◽  
Gavin Young ◽  
Soumik Sarkar ◽  
Adarsh Krishnamurthy

The widespread adoption of computer-aided design (CAD) and manufacturing (CAM) tools has resulted in the acceleration of the product development process, reducing the time taken to design a product [46]. However, the product development process, for the most part, is still decentralized with the design and manufacturing reviews being performed independently, leading to differences between as-designed and as-manufactured component. A successful product needs to meet its specifications, while also being manufacturable. In general, the design engineer ensures that the product is able to function according to the specified requirements, while the manufacturing engineer gives feedback to the design engineer about its manufacturability. This iterative process is often time consuming, leading to longer product development times and higher costs. Recent researches in integrating design and manufacturing [24, 28, 46] have tried to reduce these differences and making the product development process easier and accessible to designers, who may not be manufacturing experts. In addition, there have been different efforts to enable a collaborative product development process and reduce the number of design iterations [8, 10, 41]. However, with the increase in complexity of designs, integrating the manufacturability analysis within the design environment provides an ideal solution to improve the product design process.


1987 ◽  
Vol 31 (2) ◽  
pp. 214-217
Author(s):  
Douglas H. Harris ◽  
Steven M. Casey

A methodology for measuring the organizational effectiveness of computer-aided design (CAD) was developed and applied. A total of 295 of the 500 most frequent users of CAD in a major aerospace company provided data for the study. User-CAD effectiveness was found to be influenced by 43 major factors and 145 specific system and organizational issues. The 43 factors were classified into the following categories: system functions, system hardware, working environment, system reliability and consistency, user access, user support and training, and system administration. Indexes of User-CAD Effectiveness (UE) and System Availability and Reliability (AR) were combined into an Index of CAD Organizational Effectiveness (OE). Through the application of these methods and indexes, CAD system and organizational deficiencies can be diagnosed, potential high-payoff improvements can be identified, and the impact of developmental efforts can be assessed.


Author(s):  
Thomas R. Langerak ◽  
Joris S. M. Vergeest

Modeling with freeform features has become the standard in computer-aided design. Features offer a high-level approach to modeling shapes. However, in most commercial modeling packages, only a static set of freeform features is available. A new method for user-driven feature definition is presented, as well as a method to instantiate these user-defined features on a target surface. We propose the concept of a dual environment, in which the definition of a feature is maintained parallel to its instance on a target surface. This dual environment enables dynamic feature modeling, in which the user is able to change the definition of instantiated features on-the-fly.


Author(s):  
Chi-Cheng Chu ◽  
Rajit Gadh

In this paper, a series of interface tests on interaction approach for the generation of geometric shape designs via multi-sensory user interface of a Virtual Reality (VR) based System is presented. The goal of these interface tests is to identify an effective user interface for VR based Computer-Aided Design (CAD) system. The intuitiveness of the VR based interaction approach arises from the use of natural hand movements/gestures, and voice commands that emulate the way in which human beings discuss geometric shapes in reality. The focus of this paper is on determining a set of effective interaction approaches by using the combinations of auditory, tactile, and visual sensory modalities to accomplish typical CAD tasks. In order to evaluate the proposed interaction approach, a prototypical VR-CAD system is implemented. A series of interface tests were performed on the prototypical systems to determine the relative efficiency of a set of potential interaction approach with respect to specific fundamental design tasks. The interface test and its results are presented in this paper.


2019 ◽  
Author(s):  
Frederico Chaves Carvalho ◽  
Paulo Eduardo Ambrósio

The use of whole-cell models in research has the potential to be a powerful tool for scientific discovery, allowing researchers to test hypotheses faster than using in-vitro or in vivo methods. Such models can be considered the equivalent of Computer Aided Design for Biology. However, given their complexity, it is still difficult to employ them as an instrument in investigations. In order to solve this problem, we are developing a framework with the purpose to guide and help scientists through the process of creating whole-cell models faster, enabling them to use these tools as part of their research. This paper brings details of the early stages of the framework’s development process


Author(s):  
E.V. Belov ◽  
E.A. Brusin

In this paper we propose the design of the receiving path of an advanced satellite modem. The receiver comprises only the components produced by Russian domestic companies. The parameters of the receiver are discussed in the paper. 3D model of the receiver board obtained using the Altium Designer integrated computer-aided design (CAD) system is also presented.


Author(s):  
PRASHANT B. SAGAR ◽  
MADHUKAR R. NAGARE

Small manufacturing enterprises face a number of challenges when integrating computer aided design (CAD) tools and computer-aided engineering (CAE) tools into their design processes. One of the most significant challenges is interoperability across the wide range of commercial CAD and CAE tools. Although many of these tools support industry data standards and claim to be interoperable, the connection between them is not seamless. This paper summarizes studies of tool integration activities at one small manufacturer. The paper shows the enhancement of the product development process resulting from replacement of a two dimensional CAD system with a three-dimensional CAD system and creation of an inhouse capability to perform finite element analysis (FEA), replacing analysis that had previously been outsourced. As a result of these experiences, the manufacturer learned that improved productivity and superior designs could be obtained by integrating analysis into the design process at the earlier stages of conceptual and preliminary design.


Sign in / Sign up

Export Citation Format

Share Document