Accuracy Analysis Considering Clearances and Elastic Deformations in Parallel Manipulators

Author(s):  
Jokin Aginaga ◽  
Oscar Altuzarra ◽  
Erik Macho ◽  
Jon Olza

Clearances at joints and deformability of links produce a loss of accuracy when positioning a mechanism. End-effector pose error depends on the mechanism configuration, the applied external wrenches, the nature and magnitude of clearances and the rigidity of the mechanical components. Clearance magnitudes and elastic deformations are much smaller than other dimensions and consequently they are assumed to be infinitesimal, which leads to a linear analysis. Under this assumption, velocity equations can be utilized instead of position ones, and they can be easily expressed by using screw coordinates. A general methodology for analyzing the pose accuracy of a parallel manipulator is presented, making use of the example of a 5R planar mechanism along a pick-and-place trajectory.

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Jokin Aginaga ◽  
Oscar Altuzarra ◽  
Erik Macho ◽  
Xabier Iriarte

Two of the main sources of position error in parallel manipulators are clearances at joints and elastic deformations of the links. The former are usually necessary in order to produce a smooth movement between the pin and the hub of a joint. The latter are unavoidable and they tend to be greater in manipulators designed for pick-and-place tasks due to the need of light links. It can be stated that the end-effector pose error depends on the mechanism configuration, the applied external wrenches, the nature and magnitude of clearances, and the rigidity of the mechanical components. This paper proposes a procedure to calculate position error in parallel manipulators due to both clearances and elastic deformations. Although the procedure is applicable to any planar or spatial parallel manipulator, a planar 5R mechanism is used as an illustrative example in order to make it easier to understand.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Jian Meng ◽  
Dongjun Zhang ◽  
Zexiang Li

Due to joint clearance, a parallel manipulator’s end-effector exhibits position and orientation (or collectively referred to as pose) errors of various degrees. This paper aims to provide a systematic study of the error analysis problem for a general parallel manipulator influenced by joint clearance. We propose an error prediction model that is applicable to planar or spatial parallel manipulators that are either overconstrained or nonoverconstrained. By formulating the problem as a standard convex optimization problem, the maximal pose error in a prescribed workspace can be efficiently computed. We present several numerical examples to show the applicability and the efficiency of the proposed method.


Author(s):  
Henrique Simas ◽  
Raffaele Di Gregorio

Schoenflies-motion generators (SMGs) are 4-degrees-of-freedom (dof) manipulators whose end effector can perform translations along three independent directions, and rotations around one fixed direction (Schoenflies motions). Such motions constitute the 4-dimensional (4-D) Schoenflies subgroup of the 6-D displacement group. The most known SMGs are the serial robots named SCARA. Pick-and-place tasks are typical industrial applications that SMGs can accomplish. In the literature, 3T1R parallel manipulators (PMs) have been also proposed as SMGs. Here, a somehow novel 3T1R PM is presented and studied. Its finite and instantaneous kinematics are analyzed in depth, and analytic and geometric tools that are useful for its design are presented. The proposed SMG has a single-loop not-overconstrained architecture with actuators on or near the base and can make the end effector perform a complete rotation.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Genliang Chen ◽  
Zhuang Zhang ◽  
Lingyu Kong ◽  
Hao Wang

Abstract Passive compliance plays an important role in robot pick-and-place manipulation where large interaction force will be produced in response to small misalignments. In this paper, the authors report on compliance analysis and validation of a novel planar pick-and-place parallel manipulator consisting of a flexible limb. In the proposed manipulator, a planar flexible parallelogram linkage, which is coupled with a rigid one, is introduced to connect the moving and the base platforms. Since the flexible parallelogram linkage is capable of producing large deformation in both the horizontal and the vertical directions, the end effector of the manipulator can generate wide-range motions because of the flexible links. An efficient approach to the large deflection problem of flexible links is used to precisely predict the kinetostatics of the manipulator. Then, a compensation algorithm to the structural deflection of the links can be developed to actively control the position of the parallel manipulator’s end effector. The merit of the proposed flexible manipulator is its intrinsic passive compliance while performing pick-and-place tasks. A prototype is fabricated to conduct experiments for the validation of the proposed idea. The results show that the prototype has acceptable positioning accuracy, even when a large external load is exerted on its end effector. The compliance properties of the proposed flexible manipulator have also been verified in both the horizontal and the vertical directions.


2003 ◽  
Vol 125 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Han Sung Kim ◽  
Lung-Wen Tsai

This paper presents the design of spatial 3-RPS parallel manipulators from dimensional synthesis point of view. Since a spatial 3-RPS manipulator has only 3 degrees of freedom, its end effector cannot be positioned arbitrarily in space. It is shown that at most six positions and orientations of the moving platform can be prescribed at will and, given six prescribed positions, there are at most ten RPS chains that can be used to construct up to 120 manipulators. Further, solution methods for fewer than six prescribed positions are also described.


Robotica ◽  
2012 ◽  
Vol 31 (4) ◽  
pp. 539-548 ◽  
Author(s):  
E. Macho ◽  
O. Altuzarra ◽  
C. Pinto ◽  
A. Hernández

SUMMARYThe aim of this paper is to describe a general methodology for enlarging the workspace within which a parallel manipulator can move in a controllable way. The basis for obtaining this consists in superimposing all the singularity-free regions associated with the various different robot working modes. These can be connected because such transitions do not imply a loss of control of the manipulator. This enlarged operational workspace is associated with a certain assembly mode. In addition, the strategy to be used for path planning in this kind of workspace is presented.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Raffaele Di Gregorio

In the literature, 3-RRPRR architectures were proposed to obtain pure translation manipulators. Moreover, the geometric conditions, which 3-RRPRR architectures must match, in order to make the end-effector (platform) perform infinitesimal (elementary) spherical motion were enunciated. The ability to perform elementary spherical motion is a necessary but not sufficient condition to conclude that the platform is bound to accomplish finite spherical motion, i.e. that the mechanism is a spherical parallel manipulator (parallel wrist). This paper demonstrates that the 3-RRPRR architectures matching the geometric conditions for elementary spherical motion make the platform accomplish finite spherical motion, i.e. they are parallel wrists (3-RRPRR wrist), provided that some singular configurations, named translation singularities, are not reached. Moreover, it shows that 3-RRPRR wrists belong to a family of parallel wrists which share the same analytic expression of the constraints which the legs impose on the platform. Finally, the condition that identifies all the translation singularities of the mechanisms of this family is found and geometrically interpreted. The result of this analysis is that the translation singularity locus can be represented by a surface (singularity surface) in the configuration space of the mechanism. Singularity surfaces drawn by exploiting the given condition are useful tools in designing these wrists.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shiqi Li ◽  
Dong Chen ◽  
Junfeng Wang

Purpose This paper aims to present a method of optimal singularity-free motion planning under multiple objectives and multiple constrains for the 6-DOF parallel manipulator, which is used as an execution mechanism for the automated docking of components. Design/methodology/approach First, the distribution characteristics of the Jacobian matrix determinant in local workspace are studied based on the kinematics and a sufficient and necessary condition of singularity-free path planning in local workspace is proposed. Then, a singularity-free motion path of the end-effector is generated by a fifth-order B-spline curve and the corresponding trajectories of each actuator are obtained via the inverse kinematics. Finally, several objective functions are defined to evaluate the motion path and an improved multi-objective particle swarm optimization algorithm-based on the Pareto archive evolution is developed to obtain the optimal singularity-free motion trajectories. Findings If the initial pose and the target pose of the end-effector are both singularity-free, a singularity-free motion path can be planned in the local workspace as long as all the values of each pose elements in their own directions are monotonous. The improved multi-objective particle swarm optimization (IMPSO) algorithm is effective and efficient in the optimization of multi-objective motion planning model. The optimal singularity-free motion path of the end-effector is verified in the component docking test. The docking result is that the movable component is in alignment with the fixed one, which proves the feasibility and practicability of the proposed motion path method to some extent. Originality/value The proposed method has a certain novelty value in kinematic multi-objective motion planning of parallel manipulators; it also increases the application prospect of parallel manipulators and provides attractive solutions to component assembly for those organizations with limited cost and that want to find an option that is effective to be implemented.


2021 ◽  
Author(s):  
Brillarelli Stefano ◽  
Matteo-Claudio Palpacelli

Abstract This paper is focused on the development of an effective hardware and software architecture that is useful to improve the performance of slender parallel manipulators. The latter can perform high acceleration in fast pick and place applications, but their features can be also exploited in more advanced operations, where path following is a central issue. A simple and effective approach to model the elastodynamic behavior of flexible parallel manipulator is proposed, conceived to be fast and easy to implement in model-based control schemes. Moreover, a workbench architecture based on camera acquisitions is essential to calibrate the elastodynamic model and provide all the required information that are needed to improve path following of flexible mechanims.


Sign in / Sign up

Export Citation Format

Share Document