Enlarging operational workspaces in parallel manipulators by connecting working modes. Application to the 3RSS robot

Robotica ◽  
2012 ◽  
Vol 31 (4) ◽  
pp. 539-548 ◽  
Author(s):  
E. Macho ◽  
O. Altuzarra ◽  
C. Pinto ◽  
A. Hernández

SUMMARYThe aim of this paper is to describe a general methodology for enlarging the workspace within which a parallel manipulator can move in a controllable way. The basis for obtaining this consists in superimposing all the singularity-free regions associated with the various different robot working modes. These can be connected because such transitions do not imply a loss of control of the manipulator. This enlarged operational workspace is associated with a certain assembly mode. In addition, the strategy to be used for path planning in this kind of workspace is presented.

2010 ◽  
Vol 2 (3) ◽  
Author(s):  
Mónica Urízar ◽  
Víctor Petuya ◽  
Oscar Altuzarra ◽  
Erik Macho ◽  
Alfonso Hernández

In this paper, the authors present a general methodology for computing the configuration space for three-degree-of-freedom parallel manipulators so that the relation between input and output variables can be easily assessed. Making use of an entity called the reduced configuration space, all solutions of the direct kinematic problem in parallel manipulators are solved. The graphical representation of this entity enables the location of the direct kinematic solutions to be analyzed so as to make use of a wider operational workspace by means of path planning. A descriptive study is presented regarding the diverse possible paths that allow changing between direct kinematic solutions, thus, enlarging the manipulator’s range of motion.


Author(s):  
Jokin Aginaga ◽  
Oscar Altuzarra ◽  
Erik Macho ◽  
Jon Olza

Clearances at joints and deformability of links produce a loss of accuracy when positioning a mechanism. End-effector pose error depends on the mechanism configuration, the applied external wrenches, the nature and magnitude of clearances and the rigidity of the mechanical components. Clearance magnitudes and elastic deformations are much smaller than other dimensions and consequently they are assumed to be infinitesimal, which leads to a linear analysis. Under this assumption, velocity equations can be utilized instead of position ones, and they can be easily expressed by using screw coordinates. A general methodology for analyzing the pose accuracy of a parallel manipulator is presented, making use of the example of a 5R planar mechanism along a pick-and-place trajectory.


Robotica ◽  
2008 ◽  
Vol 26 (2) ◽  
pp. 229-239 ◽  
Author(s):  
G. Carbone ◽  
M. Ceccarelli ◽  
P. J. Oliveira ◽  
S. F. P. Saramago ◽  
J. C. M. Carvalho

SUMMARYIn this paper, a novel algorithm is formulated and implemented for optimum path planning of parallel manipulators. A multi-objective optimisation problem has been formulated for an efficient numerical solution procedure through kinematic and dynamic features of manipulator operation. Computational economy has been obtained by properly using a genetic algorithm to search an optimal solution for path spline-functions. Numerical characteristics of the numerical solving procedure have been outlined through a numerical example applied to Cassino Parallel Manipulator (CaPaMan) both for path planning and design purposes.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


2010 ◽  
Vol 44-47 ◽  
pp. 1375-1379
Author(s):  
Da Chang Zhu ◽  
Li Meng ◽  
Tao Jiang

Parallel manipulators has been extensively studied by virtues or its high force-to-weight ratio and widely spread applications such as vehicle or flight simulator, a machine tool and the end effector of robot system. However, as each limb includes several rigid joints, assembling error is demanded strictly, especially in precision measurement and micro-electronics. On the other hand, compliant mechanisms take advantage of recoverable deformation to transfer or transform motion, force, or energy and the benefits of compliant mechanisms mainly come from the elimination of traditional rigid joints, but the traditional displacement method reduce the stiffness of spatial compliant parallel manipulators. In this paper, a new approach of structure synthesis of 3-DoF rotational compliant parallel manipulators is proposed. Based on screw theory, the structures of RRS type 3-DoF rotational spatial compliant parallel manipulator are developed. Experiments via ANSYS are conducted to give some validation of the theoretical analysis.


2008 ◽  
Vol 14 (3) ◽  
pp. 201-212 ◽  
Author(s):  
Chun-Liang Lin ◽  
Horn-Yong Jan ◽  
Jr-Rong Lin ◽  
Thong-Shing Hwang

Author(s):  
Chunxia Zhu ◽  
Jay Katupitiya ◽  
Jing Wang

Purpose Manipulator motion accuracy is a fundamental requirement for precision manufacturing equipment. Light weight manipulators in high speed motions are vulnerable to deformations. The purpose of this work is to analyze the effect of link deformation on the motion precision of parallel manipulators. Design/methodology/approach The flexible dynamics model of the links is first established by applying the Euler–Bernoulli beam theory and the assumed modal method. The rigid-flexible coupling equations of the parallel mechanism are further derived by using the Lagrange multiplier approach. The elastic energy resulting from spiral motion and link deformations are computed and analyzed. Motion errors of the 3-link torque-prismatic-torque parallel manipulator are then evaluated based on its inverse kinematics. The validation experiments are also conducted to verify the numerical results. Findings The lateral deformation and axial deformation are largest at the middle of the driven links. The axial deformation at the middle of the driven link is approximately one-tenth of the transversal deformation. However, the elastic potential energy of the transversal deformation is much smaller than the elastic force generated from axial deformation. Practical implications Knowledge on the relationship between link deformation and motion precision is useful in the design of parallel manipulators for high performing dynamic responses. Originality/value This work establishes the relationship between motion precision and the amount of link deformation in parallel manipulators.


Author(s):  
Ethan Stump ◽  
Vijay Kumar

While there is extensive literature available on parallel manipulators in general, there has been much less attention given to cable-driven parallel manipulators. In this paper, we address the problem of analyzing the reachable workspace using the tools of semi-definite programming. We build on earlier work [1, 2] done using similar techniques by deriving limiting conditions that allow us to compute analytic expressions for the boundary of the reachable workspace. We illustrate this computation for a planar parallel manipulator with four actuators.


Author(s):  
Damien Chablat ◽  
Philippe Wenger

Abstract The goal of this paper is to define the n-connected regions in the Cartesian workspace of fully-parallel manipulators, i.e. the maximal regions where it is possible to execute point-to-point motions. The manipulators considered in this study may have multiple direct and inverse kinematic solutions. The N-connected regions are characterized by projection, onto the Cartesian workspace, of the connected components of the reachable configuration space defined in the Cartesian product of the Cartesian space by the joint space. Generalized octree models are used for the construction of all spaces. This study is illustrated with a simple planar fully-parallel manipulator.


Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document