Vascular Fluid Damping of Flexible Multifunctional Composite Cantilevers: Experiment, Modeling and Analysis

Author(s):  
Matthias Gaucher-Petitdemange ◽  
Ya Wang ◽  
Masoud Masoumi ◽  
Daniel J. Inman

Passive structural damping treatments based on viscoelastic polymers of elastomers are widely used in practice and have been the focus of numerous research studies and papers. Here we examine a multifunctional structure with vascular channels and investigate how the fluid in the channels provides damping to the system. While the vibration and stability of flow through a pipe has been extensively examined, internal fluid induced passive damping has not been well investigated in literature. Motivated by research in using vascular channels to provide self-cooling and autonomous healing of multifunctional composites, here we investigate the material and mechanical parameter dependence effects of internal fluid damping using an experimental study, modeling and numerical analysis of the dynamics of flexible cantilever beam conveying three types of internal vascular fluid flows.

1990 ◽  
Vol 112 (3) ◽  
pp. 284-290 ◽  
Author(s):  
D. D. Budny ◽  
F. J. Hatfield ◽  
D. C. Wiggert

The traditional approach to designing a piping system subject to internal dynamic pressure is to restrain the piping as much as possible, and the approximation made in the analysis is to assume no contribution of structural energy dissipation. To determine the validity of this concept and approximation, an experimental study of a piping system was performed to measure the influence of structural damping. A pipe system was designed with a loop that could be turned so that its natural frequency would match that of the contained liquid. It was discovered that a properly sized damper on the piping loop greatly accelerates the decay of the fluid pressure transient. The damper absorbs some energy from the piping, reducing the resulting rebound fluid pressure. When the loop is subjected to forced steady-state vibration, there is a fluid pressure response. The amplitude of that pressure can be reduced by installing an external damper: the stiffer the damper the more effective it is in reducing dynamic pressure.


Author(s):  
Michael B. Rannow ◽  
Perry Y. Li

A method for significantly reducing the losses associated with an on/off controlled hydraulic system is proposed. There has been a growing interest in the use of on/off valves to control hydraulic systems as a means of improving system efficiency. While on/off valves are efficient when they are fully open or fully closed, a significant amount of energy can be lost in throttling as the valve transitions between the two states. A soft switching approach is proposed as a method of eliminating the majority of these transition losses. The operating principle of soft switching is that fluid can temporarily flow through a check valve or into a small chamber while valve orifices are partially closed. The fluid can then flow out of the chamber once the valve has fully transitioned. Thus, fluid flows through the valve only when it is in its most efficient fully open state. A model of the system is derived and simulated, with results indicating that the soft switching approach can reduce transition and compressibility losses by 79%, and total system losses by 66%. Design equations are also derived. The soft switching approach has the potential to improve the efficiency of on/off controlled systems and is particularly important as switching frequencies are increased. The soft switching approach will also facilitate the use of slower on/off valves for effective on/off control; in simulation, a valve with soft switching matched the efficiency an on/off valve that was 5 times faster.


2001 ◽  
Author(s):  
Tak For Yu ◽  
Sylvanus Yuk Kwan Lee ◽  
Yitshak Zohar ◽  
Man Wong

Abstract Extensive development of biomedical and chemical analytic microdevices involves microscale fluid flows. Merging of fluid streams is expected to be a key feature in such devices. An integrated microsystem consisting of merging microchannels and distributed pressure microsensors has been designed and characterized to study this phenomenon on a microscale. The two narrow, uniform and identical channels merged smoothly into a wide, straight and uniform channel downstream of a splitter plate. All of the devices were fabricated using standard micromachining techniques. Mass flow rates and pressure distributions were measured for single-phase gas flow in order to characterize the device. The experimental results indicated that the flow developed when both inlets were connected together to the gas source could be modeled as gas flow through a straight and uniform microchannel. The flow through a single branch while the other was blocked, however, could be modeled as gas flow through a pair of microchannels in series. Flow visualizations of two-phase flows have been conducted when driving liquid and gas through the inlet channels. Several instability modes of the gas/liquid interface have been observed as a function of the pressure difference between the two streams at the merging location.


Author(s):  
H. G. D. Goyder ◽  
K. Armstrong ◽  
L. Billingham ◽  
M. J. Every ◽  
T. P. Jee ◽  
...  

Gas flow through a corrugated pipe can produce unacceptable levels of noise. The occurrence of such noise gave rise to concerns about vibration induced fatigue of small-bore subsea pipework in the Schiehallion oil field. In order to check that the subsea pipework was free from noise-induced vibration a full scale replica of the subsea equipment containing the small-bore pipework was built and tested. The test required the generation of acoustic pressures with a 1 bar amplitude and a frequency range of 80 to 800Hz. It was also necessary to arrange for resonant conditions within the pipework and for acoustic nodes and anti-nodes to be swept though a range of possible locations. The test was conducted with full-scale conditions of methane at a static pressure of 170bar and with a range of gas flow rates. Particular attention was given to achieving the correct acoustic and structural natural frequencies together with the correct acoustic and structural damping ratios. The subsea equipment was found to be vulnerable for one operating condition. This vulnerability was removed by retro-fitting a brace to the existing subsea pipework.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192138 ◽  
Author(s):  
Mohammad Yaghoub Abdollahzadeh Jamalabadi ◽  
Mohammadreza Daqiqshirazi ◽  
Hossein Nasiri ◽  
Mohammad Reza Safaei ◽  
Truong Khang Nguyen

1954 ◽  
Vol 58 (519) ◽  
pp. 205-208 ◽  
Author(s):  
Y. R. Mayhew

When a turbulent fluid flows past a solid surface whose temperature differs from that of the fluid, the shear stress at the surface and the heat flow from it can be related by means of the Reynolds analogy. This analogy has been improved by Prandtl, Taylor, von Kármán and others, and its validity has been tested for flow through tubes and past flat plates by several investigators. In this note the analogy is checked against shear stress data and heat transfer data for a cylinder rotating in “still” air, when the flow is turbulent.


Sign in / Sign up

Export Citation Format

Share Document