Reduced Material Model of Composite Laminates for 3D Finite Element Analysis

Author(s):  
Goldy Kumar ◽  
Vadim Shapiro

Laminate composites are widely used in automotive, aerospace, medical, and increasingly in consumer industries, due to their reduced weight, superior structural properties and cost-effectiveness. However, structural analysis of complex laminate structures remains challenging. 2D finite element methods based on plate and shell theories may be accurate and efficient, but they generally do not apply to the whole structure, and require identification and preprocessing (dimensional reduction) of the regions where the underlying assumptions hold. Differences in and limitations of theories for thin/thick plates and shells further complicate modeling and simulation of composites. Fully automated structural analysis using 3D elements with sufficiently high order basis functions is possible in principle, but is rarely practiced due to the significant increase in computational integration cost in the presence of a large number of laminate plies. We propose to replace the actual layup of the laminate structure by a simplified material model, allowing for a substantial reduction of the computational cost of 3D FEA. The reduced model, under the usual assumptions made in lamination theory, has the same constitutive relationship as the corresponding 2D plate model of the original laminate, but requires only a small fraction of computational integration costs in 3D FEA. We describe implementation of 3D FEA using the reduced material model in a meshfree system using second order B-spline basis functions. Finally, we demonstrate its validity by showing agreement between computed and known results for standard problems.

2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


2015 ◽  
Vol 809-810 ◽  
pp. 859-864
Author(s):  
Dănuţ Zahariea

In this paper, the finite element analysis for stress/deformation/modes of vibration for the centrifugal fan impeller with constant thickness backward-curved blades using CATIA software will be presented. The principal steps of the finite element analysis procedure using CATIA/Generative Structural Analysis environment will be presented: creating the 3D model; configuring the mesh; applying the restraints; applying the loads; running the numerical static analysis and the numerical frequency analysis; interpreting the results and observing the modes of vibration correlating with the impeller mode shape. This procedure will be used for 4 different centrifugal fan impellers according with the 4 blade design methods and the results will be comparatively analyzed. For each design method, two materials will be used: steel with density of 7860 kg/m3 and aluminium with density of 2710 kg/m3. Two important results have been obtained after the structural analysis: under the working conditions considered for the analysis, all 4 blade design methods leads to impellers with very good mechanical behaviour; any frequency of the main modes of vibrations for all blade design methods and for both materials is not in phase with the impeller speed, thus the possibility of resonance being eliminated.


Author(s):  
Y Xu ◽  
B Liu ◽  
J Liu ◽  
S Riemenschneider

Empirical mode decomposition (EMD) is a powerful tool for analysis of non-stationary and nonlinear signals, and has drawn significant attention in various engineering application areas. This paper presents a finite element-based EMD method for two-dimensional data analysis. Specifically, we represent the local mean surface of the data, a key step in EMD, as a linear combination of a set of two-dimensional linear basis functions smoothed with bi-cubic spline interpolation. The coefficients of the basis functions in the linear combination are obtained from the local extrema of the data using a generalized low-pass filter. By taking advantage of the principle of finite-element analysis, we develop a fast algorithm for implementation of the EMD. The proposed method provides an effective approach to overcome several challenging difficulties in extending the original one-dimensional EMD to the two-dimensional EMD. Numerical experiments using both simulated and practical texture images show that the proposed method works well.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2506 ◽  
Author(s):  
Chao Liu ◽  
Yaoyao Shi

Dimensional control can be a major concern in the processing of composite structures. Compared to numerical models based on finite element methods, the analytical method can provide a faster prediction of process-induced residual stresses and deformations with a certain level of accuracy. It can explain the underlying mechanisms. In this paper, an improved analytical solution is proposed to consider thermo-viscoelastic effects on residual stresses and deformations of flat composite laminates during curing. First, an incremental differential equation is derived to describe the viscoelastic behavior of composite materials during curing. Afterward, the analytical solution is developed to solve the differential equation by assuming the solution at the current time, which is a linear combination of the corresponding Laplace equation solutions of all time. Moreover, the analytical solution is extended to investigate cure behavior of multilayer composite laminates during manufacturing. Good agreement between the analytical solution results and the experimental and finite element analysis (FEA) results validates the accuracy and effectiveness of the proposed method. Furthermore, the mechanism generating residual stresses and deformations for unsymmetrical composite laminates is investigated based on the proposed analytical solution.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


Sign in / Sign up

Export Citation Format

Share Document