Identification of Anisotropic Material Parameters in Elastic Tissue Using Magnetic Resonance Imaging of Shear Waves

Author(s):  
Dennis J. Tweten ◽  
Ruth J. Okamoto ◽  
John L. Schmidt ◽  
Joel R. Garbow ◽  
Philip V. Bayly

This paper describes the application of a material parameter identification method based on elastic shear wave propagation to simulated and experimental data from magnetic resonance elastography (MRE). In MRE, the displacements of traveling transverse and longitudinal waves in elastic, biological tissue are captured as complex 3D images. Typically, the magnitude of these waves is small, and the equations of waves in linear elastic media can be used to estimate the material properties of tissue, such as internal organs, muscle, and the brain. Of particular interest are fibrous tissues which have anisotropic properties. In this paper, an anisotropic material model with three material parameters (shear modulus, shear anisotropy, and tensile anisotropy) is the basis for parameter identification. This model relates shear wave speed, propagation direction, and polarization to the material properties. A directional filtering approach is applied to isolate the speed and polarization of shear waves propagating in multiple directions. The material properties are then estimated from the material model and isolated shear waves using weighted least squares.

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Zuoxian Hou ◽  
Ruth J. Okamoto ◽  
Philip V. Bayly

Abstract This paper describes the propagation of shear waves in a Holzapfel–Gasser–Ogden (HGO) material and investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO material model from experimental data. In most MRE studies the behavior of the material is assumed to be governed by linear, isotropic elasticity or viscoelasticity. In contrast, biological tissue is often nonlinear and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (predeformation) plays an important role in shear wave propagation. Closed form expressions for shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) configuration and after imposed predeformations. These analytical expressions show that shear wave speeds are affected by the parameters (μ0, k1, k2, κ) of the HGO model and by the direction and amplitude of the predeformations. Simulations of corresponding finite element (FE) models confirm the predicted influence of HGO model parameters on speeds of shear waves with specific polarization and propagation directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed deformations could ultimately allow the noninvasive estimation of material parameters in vivo from experimental shear wave image data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Flé ◽  
Guillaume Gilbert ◽  
Pol Grasland-Mongrain ◽  
Guy Cloutier

AbstractQuantitative mechanical properties of biological tissues can be mapped using the shear wave elastography technique. This technology has demonstrated a great potential in various organs but shows a limit due to wave attenuation in biological tissues. An option to overcome the inherent loss in shear wave magnitude along the propagation pathway may be to stimulate tissues closer to regions of interest using alternative motion generation techniques. The present study investigated the feasibility of generating shear waves by applying a Lorentz force directly to tissue mimicking samples for magnetic resonance elastography applications. This was done by combining an electrical current with the strong magnetic field of a clinical MRI scanner. The Local Frequency Estimation method was used to assess the real value of the shear modulus of tested phantoms from Lorentz force induced motion. Finite elements modeling of reported experiments showed a consistent behavior but featured wavelengths larger than measured ones. Results suggest the feasibility of a magnetic resonance elastography technique based on the Lorentz force to produce an shear wave source.


Modelling ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 225-241
Author(s):  
Amit Madhukar ◽  
Martin Ostoja-Starzewski

Tissues of the brain, especially white matter, are extremely heterogeneous—with constitutive responses varying spatially. In this paper, we implement a high-resolution Finite Element (FE) head model where heterogeneities of white matter structures are introduced through Magnetic Resonance Elastography (MRE) experiments. Displacement of white matter under shear wave excitation is captured and the material properties determined through an inversion algorithm are incorporated in the FE model via a two-term Ogden hyper-elastic material model. This approach is found to improve model predictions when compared to experimental results. In the first place, mechanical response in the cerebrum near stiff structures such as the corpus callosum and corona radiata are markedly different compared with a homogenized material model. Additionally, the heterogeneities introduce additional attenuation of the shear wave due to wave scattering within the cerebrum.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
S Bezy ◽  
M Orlowska ◽  
A Van Craenenbroeck ◽  
M Cvijic ◽  
J Duchenne ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Research Foundation - Flanders (FWO) Background Shear wave elastography (SWE) is a novel ultrasound technique based on the detection of transverse waves travelling through the myocardium using high frame rate echocardiography. The propagation speed of these shear waves is dependent on the stiffness of the myocardium. Previous studies have shown the potential of SWE for the non-invasive assessment of myocardial stiffness. It is unclear, however, if preload changes lead to measurable changes in the shear wave propagation speed in the left ventricle. In patients undergoing hemodialysis, the volume status is acutely changed. In this way, the effect of preload changes on shear wave speed can be assessed. Purpose The aim of this study was to explore the influence of preload changes on end-diastolic shear wave propagation speed. Methods Until now, 6 patients (age: 80[53-85] years; female: n = 2) receiving hemodialysis treatment were included. Echocardiographic images were taken before and every hour during a 4 hour hemodialysis session. Left ventricular parasternal long-axis views were acquired with an experimental high frame rate ultrasound scanner (average frame rate: 1016[941-1310] Hz). Standard echocardiography was performed with a conventional ultrasound machine. Shear waves were visualized on tissue acceleration maps by drawing an M-mode line along the interventricular septum. Shear wave propagation speed after mitral valve closure (MVC) was calculated by measuring the slope of the wave pattern on the acceleration maps (Figure A). Results Over the course of hemodialysis, the systolic (141[135-156] mmHg vs. 165[105-176] mmHg; p = 0.35 among groups) and diastolic blood pressure (70[66-75] mmHg vs. 82[63-84] mmHg; p = 0.21 among groups), heart rate (56[54-73] bmp vs. 57[50-67] bpm; p = 0.76 among groups), E/A ratio (1.6[0.7-1.8] vs. 1.2[0.6-1.4]; p = 0.43 among groups) and E/e’ (14[9-15] vs. 9[8-13]; p = 0.24 among groups ) remained the same. The ultra-filtrated volumes are shown in Figure B. The shear wave propagation speed after MVC gradually decreased during hemodialysis (6.7[5.4-9.7] m/s vs. 4.4[3.6-9.0] m/s; p = 0.04 among groups) (Figure C). There was a moderate negative correlation between shear wave speed and the ultra-filtrated volume (r=-0.63; p < 0.01) (Figure D). Conclusion The shear wave propagation speed at MVC significantly decreased over the course of hemodialysis and correlated to the ultra-filtrated volume. These results indicate that alterations in left ventricular preload affect the speed of shear waves at end-diastole. End-diastolic shear wave speed might therefore be a potential novel parameter for the evaluation of the left ventricular filling state. More patients will be included in the future to further explore these findings. Abstract Figure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marian Amber Troelstra ◽  
Jurgen Henk Runge ◽  
Emma Burnhope ◽  
Alessandro Polcaro ◽  
Christian Guenthner ◽  
...  

AbstractChanges in myocardial stiffness may represent a valuable biomarker for early tissue injury or adverse remodeling. In this study, we developed and validated a novel transducer-free magnetic resonance elastography (MRE) approach for quantifying myocardial biomechanics using aortic valve closure-induced shear waves. Using motion-sensitized two-dimensional pencil beams, septal shear waves were imaged at high temporal resolution. Shear wave speed was measured using time-of-flight of waves travelling between two pencil beams and corrected for geometrical biases. After validation in phantoms, results from twelve healthy volunteers and five cardiac patients (two left ventricular hypertrophy, two myocardial infarcts, and one without confirmed pathology) were obtained. Torsional shear wave speed in the phantom was 3.0 ± 0.1 m/s, corresponding with reference speeds of 2.8 ± 0.1 m/s. Geometrically-biased flexural shear wave speed was 1.9 ± 0.1 m/s, corresponding with simulation values of 2.0 m/s. Corrected septal shear wave speeds were significantly higher in patients than healthy volunteers [14.1 (11.0–15.8) m/s versus 3.6 (2.7–4.3) m/s, p = 0.001]. The interobserver 95%-limits-of-agreement in healthy volunteers were ± 1.3 m/s and interstudy 95%-limits-of-agreement − 0.7 to 1.2 m/s. In conclusion, myocardial shear wave speed can be measured using aortic valve closure-induced shear waves, with cardiac patients showing significantly higher shear wave speeds than healthy volunteers. This non-invasive measure may provide valuable insights into the pathophysiology of heart failure.


Geophysics ◽  
2005 ◽  
Vol 70 (2) ◽  
pp. N1-N15 ◽  
Author(s):  
James G. Berryman

Although there are five effective shear moduli for any layered transversely isotropic with a vertical symmetry axis (VTI) medium, one and only one effective shear modulus of the layered system (namely, the uniaxial shear) contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude of shear energy stored in this modulus by an amount that ranges from the smallest to the largest effective shear moduli of the VTI system. But since there are five shear moduli in play, the overall increase in shear energy due to fluids is reduced by a factor of about five in general. We can, therefore, give definite bounds on the maximum increase of overall shear modulus — about 20% of the allowed range as liquid is fully substituted for gas. An attendant increase of density (depending on porosity and fluid density) by approximately 5–10% decreases the shear-wave speed and thereby partially offsets the effect of this shear modulus increase. The final result is an increase of shear-wave speed on the order of 5–10%. This increase is shown to be possible under most favorable circumstances, that is, when the shear modulus fluctuations are large (resulting in strong anisotropy) and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well logging or laboratory experiments), resulting short response times also produce the requisite undrained behavior; therefore, fluids also affect shear waves at high frequencies by increasing rigidity.


2018 ◽  
Vol 85 (5) ◽  
Author(s):  
M. Hajhashemkhani ◽  
M. R. Hematiyan ◽  
S. Goenezen

Identification of material properties of hyper-elastic materials such as soft tissues of the human body or rubber-like materials has been the subject of many works in recent decades. Boundary conditions generally play an important role in solving an inverse problem for material identification, while their knowledge has been taken for granted. In reality, however, boundary conditions may not be available on parts of the problem domain such as for an engineering part, e.g., a polymer that could be modeled as a hyper-elastic material, mounted on a system or an in vivo soft tissue. In these cases, using hypothetical boundary conditions will yield misleading results. In this paper, an inverse algorithm for the characterization of hyper-elastic material properties is developed, which takes into consideration unknown conditions on a part of the boundary. A cost function based on measured and calculated displacements is defined and is minimized using the Gauss–Newton method. A sensitivity analysis is carried out by employing analytic differentiation and using the finite element method (FEM). The effectiveness of the proposed method is demonstrated through numerical and experimental examples. The novel method is tested with a neo–Hookean and a Mooney–Rivlin hyper-elastic material model. In the experimental example, the material parameters of a silicone based specimen with unknown boundary condition are evaluated. In all the examples, the obtained results are verified and it is observed that the results are satisfactory and reliable.


Sign in / Sign up

Export Citation Format

Share Document