Integrated Capture and Representation of Product Information in Computer-Aided Product Development

Author(s):  
Erik Lejon ◽  
Michael Lundin ◽  
Andreas Dagman ◽  
Peter Jeppsson ◽  
Mats Näsström

This paper features the implementation and evaluation of a proposed approach for information capture and representation integrated into the existing design environments at two manufacturing companies. A tool has been developed that automatically derives information from the CAD system during design and provides users with the means to capture product information that has previously been documented outside of the CAD system. Product information is managed in a PLM data model and becomes, once stored, the foundation for providing tailored views of information. Feedback from the evaluation shows that the prescribed approach was preferred to the current one and that it would likely provide value to users, both authors and consumers, of product information. This approach can reduce the time required to capture the pertinent product information. However, the primary savings are likely to be indirect as a result of increased consistency, understanding, and the potential (re)use of product information. The approach and tools presented constitute another step toward providing each stakeholder with more efficient, intuitive, contextual, and purposeful support for information capture and representation in computer-aided product development.

Author(s):  
PRASHANT B. SAGAR ◽  
MADHUKAR R. NAGARE

Small manufacturing enterprises face a number of challenges when integrating computer aided design (CAD) tools and computer-aided engineering (CAE) tools into their design processes. One of the most significant challenges is interoperability across the wide range of commercial CAD and CAE tools. Although many of these tools support industry data standards and claim to be interoperable, the connection between them is not seamless. This paper summarizes studies of tool integration activities at one small manufacturer. The paper shows the enhancement of the product development process resulting from replacement of a two dimensional CAD system with a three-dimensional CAD system and creation of an inhouse capability to perform finite element analysis (FEA), replacing analysis that had previously been outsourced. As a result of these experiences, the manufacturer learned that improved productivity and superior designs could be obtained by integrating analysis into the design process at the earlier stages of conceptual and preliminary design.


Author(s):  
Simon Szykman ◽  
Steven J. Fenves ◽  
Walid Keirouz ◽  
Steven B. Shooter

Abstract U.S. industry spends billions of dollars as a result of poor interoperability between computer-aided engineering software tools. While ongoing standards development efforts are attempting to address this problem in today’s tools, the more significant demand in next-generation tools will be for representations that allow information used or generated during various product development activities to feed forward and backward into others by way of direct electronic interchange. Although the next generation of tools has the potential for greatly increased benefits, there is also a potential for the cost of poor interoperability to multiply. The goal of this work is to develop representations of information that are unavailable in traditional CAD/CAM/CAE tools to support the exchange of product information in a distributed product development environment. This paper develops a vision of next-generation product development systems and provides a core representation for product development information on which future systems can be built.


2019 ◽  
Vol 13 ◽  
Author(s):  
Muhammad Aqeel Ashraf ◽  
Shahreen Kasim

: In this paper, medical images are used to realize the computer-aided diagnosis (CAD) system which develops targeted solutions to existing problems. Relying on the Mi COM platform, this system has collected and collated cases of all kinds, based on which a unified data model is constructed according to the gold standard derived by deducting each instance. Afterwards, the object segmentation algorithm is employed to segment the diseased tissues. Edge modification and feature extraction are performed for the tissue block segmented. The features extracted are classified by applying support vector machines or the Naive Bayesian classification algorithm. From the simulation results, the CAD system developed in this paper allows realization of diagnosis and treatment and sharing of data resources.


Author(s):  
H. L. Johannesson

Abstract In this work the problem of designing a CAD-system independent product model data base, to be used in computer aided elastomeric seal design, is treated. It is shown how a general purpose turn-key CAD-system can be used together with an external product model data base and external calculation programs. The importance of storing product information in a CAD-system independent data base instead of on drawings in one particular CAD-system is pointed out. This is of special interest from long time storage point of view, as product related information is expected to live longer in a manufacturing company than one particular CAD-system. In order to be able to transmit data between the CAD-system and the external product model data base, and between the data base and the external calculation programs, special interfaces must be designed. Here it is demonstrated how such interface programs can be designed using FORTRAN 77 and a particular graphic application program language available in the CAD-system CDM 300. For the creation of the data base and for the data storage and data retrieval, the data base management system TORNADO is used. Finally the simultaneous use of the CAD-system, the external data base and the calculation program, when designing an elastomeric seal cross section, is demonstrated with a test example.


Author(s):  
Victor B. Gerdes

Discrete manufacturing companies practicing distributed product development encounter challenges creating digital products, collaborating cross functionally in an organization and throughout the value chain, and controlling and managing product information and product development processes throughout the product’s lifecycle. This paper investigates the critical capabilities of a product development system for distributed product lifecycle management (PLM). A comprehensive product development system consisting of PTC’s Windchill PDMLink (control), Windchill ProjectLink (collaborate), and Pro/ENGINEER Wildfire (create - mechanical computer-aided design - MCAD) is presented in this paper with use cases and examples as a software solution for enabling distributed collaborative product development.


Author(s):  
Zhixin Yang ◽  
Zhejie Liu ◽  
Jinmin Zhao ◽  
Zhenqun Shen ◽  
Zhao Xie ◽  
...  

The product development processes nowadays are featured with ever-increasing complexity of product configurations, diverse data resources, and multi-disciplinary, geographical dispersed engineering teams, and intensive use of various software tools for managing the data associated with the product and its life cycle. These characteristics result in the need of a collaborative product development (CPD) environment for today’s industries. This paper describes the methodology which enables the engineering collaboration within a compressed product development cycle, and presents our results with the development of a CPD environment. A four-tiered client/server collaboration architecture, which allows system integration, data sharing, and collaboration among team members in an internet platform, is described. By integrating the distributed application servers, such as product specification server, CAD/CAE server, project management, collaborative visualization workspace, and product data management module, using web technologies, an engineering CPD portal is proposed and implemented. This portal environment could bring entire engineering team together in one place in real-time, irrespective of geography, enterprise boundaries, or native systems, to share product information throughout the product development processes, which include product definition, design, engineering analysis, and manufacturing, etc. Manufacturing companies could therefore collaborate closely with their suppliers/collaborators global widely. A case study is carried out for collaborative development of a typical component used in data storage industry, the spindle motor, to illustrate the proposed approach and to validate the developed systems.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 973
Author(s):  
Valentina Giannini ◽  
Simone Mazzetti ◽  
Giovanni Cappello ◽  
Valeria Maria Doronzio ◽  
Lorenzo Vassallo ◽  
...  

Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation. Three resident radiologists were asked to review multiparametric-MRI of patients with and without PCa, both unassisted and assisted by a CAD system. In both reading sessions, residents recorded all positive cases, and sensitivity, specificity, negative and positive predictive values were computed and compared. The dataset comprised 90 patients (45 with at least one clinically significant biopsy-confirmed PCa). Sensitivity significantly increased in the CAD assisted mode for patients with at least one clinically significant lesion (GS > 6) (68.7% vs. 78.1%, p = 0.018). Overall specificity was not statistically different between unassisted and assisted sessions (94.8% vs. 89.6, p = 0.072). The use of the CAD system significantly increases the per-patient sensitivity of inexperienced readers in the detection of clinically significant PCa, without negatively affecting specificity, while significantly reducing overall reporting time.


Technovation ◽  
2021 ◽  
pp. 102239
Author(s):  
Julio Cesar Ferro de Guimarães ◽  
Eliana Andréa Severo ◽  
Charbel Jose Chiappetta Jabbour ◽  
Ana Beatriz Lopes de Sousa Jabbour ◽  
Ariane Ferreira Porto Rosa

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


Author(s):  
Rikard Söderberg

Abstract This work presents an interface for tolerance analysis in a CAD system. A method for picking up necessary information from a 2D drawing is developed and implemented as an interface in a commercial CAD system. The interface communicates with an external calculation program which determines unknown tolerance limits using the normal distribution model. Results from the calculation program is in the end used by the interface to present measures with tolerances on the drawing. The advantage of using CATI in preliminary design is discussed, and a strategy for treating interrelated tolerance chains is presented.


Sign in / Sign up

Export Citation Format

Share Document