A Cluster Analysis Study of Opportune Adoption of Electric Drive Vehicles for Better Greenhouse Gas Reduction

Author(s):  
Karim Hamza ◽  
Kenneth P. Laberteaux

Adoption of electric drive vehicles (EDVs) presents an opportunity for reduction of greenhouse gas (GHG) emissions. From an individual vehicle standpoint however, the GHG reduction can vary significantly depending on the type of driving that the vehicle is used for. This is primarily due to conventional vehicles (CVs) having poor energy efficiency in stop-and-go city-like driving compared to their performance in steady highway-like driving. This study attempts to examine the magnitude of the differential in GHG reduction benefit for real driving behaviors obtained from California Household Travel Survey (CHTS-2013). Recorded vehicles speed traces are analyzed via a fuel economy simulator then a hybrid support vector clustering (SVC) technique is applied to form groups of vehicle samples with similar driving behaviors. Unlike many clustering techniques, SVC does not impose a pre-dictated number of clusters, but has a number of parameters that must be tuned in order to obtain meaningful results. Tuning of the parameters is performed via a multi-objective evolutionary algorithm (SPEA2) after formulating the cluster tuning as a two-objective problem that seeks to maximize: i) differential benefit in GHG reduction, and ii) fraction of the population that groups of vehicles represent. Results show that replacing a CV with its equivalent hybrid (HEV) can reduce GHG emissions per mile of driving by 2 to 2.5 times more for a group of vehicles (best opportune for an EDV) compared to the less opportune group.

Author(s):  
Kenneth P. Laberteaux ◽  
Regina R. Clewlow ◽  
Karim Hamza

This paper explores opportunities for reductions in lifecycle greenhouse gas (GHG) emissions through adoption of electric drive vehicles (EDV), including hybrid, plug-in hybrid and battery electric vehicles. EDVs have generally lower GHG emission rates during operation than similar-class conventional vehicles (CV). However, a key observation is that GHG reductions per mile are much larger during city driving conditions than on the highway. An examination of the estimated GHG emissions is conducted for city and highway driving conditions for several CV and EDV models based on testing results from the US Environmental Protection Agency (EPA), then compared with key findings from the 2009 National Household Travel Survey (NHTS 2009). Through an empirical analysis of actual driving patterns in the U.S., this study highlights potential missed opportunities to reduce transportation GHG emissions through the allocation of incentives and/or regulations. Key findings include the significant potential to reduce GHG emissions of taxis and delivery vehicles, as well as driving pattern-based incentives for individual vehicle owners.


2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


Author(s):  
Francis Ferraro

The potential for global climate change due to the release of greenhouse gas (GHG) emissions is being debated both nationally and internationally. While many options for reducing GHG emissions are being evaluated, MSW management presents potential options for reductions and has links to other sectors (e.g., energy, industrial processes, forestry, transportation) with further GHG reduction opportunities.


2020 ◽  
Vol 12 (9) ◽  
pp. 3582
Author(s):  
Sungwoo Lee ◽  
Sungho Tae

Multiple nations have implemented policies for greenhouse gas (GHG) reduction since the 21st Conference of Parties (COP 21) at the United Nations Framework Convention on Climate Change (UNFCCC) in 2015. In this convention, participants voluntarily agreed to a new climate regime that aimed to decrease GHG emissions. Subsequently, a reduction in GHG emissions with specific reduction technologies (renewable energy) to decrease energy consumption has become a necessity and not a choice. With the launch of the Korean Emissions Trading Scheme (K-ETS) in 2015, Korea has certified and financed GHG reduction projects to decrease emissions. To help the user make informed decisions for economic and environmental benefits from the use of renewable energy, an assessment model was developed. This study establishes a simple assessment method (SAM), an assessment database (DB) of 1199 GHG reduction technologies implemented in Korea, and a machine learning-based GHG reduction technology assessment model (GRTM). Additionally, we make suggestions on how to evaluate economic benefits, which can be obtained in conjunction with the environmental benefits of GHG reduction technology. Finally, we validate the applicability of the assessment model on a public building in Korea.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5514
Author(s):  
Seo-Hoon Kim ◽  
SungJin Lee ◽  
Seol-Yee Han ◽  
Jong-Hun Kim

A new government report on climate change shows that global emissions of greenhouse gases have increased to very high levels despite various policies to reduce climate change. Building energy accounts for 40% of the world’s energy consumption and accounts for 33% of the world’s greenhouse gas emissions. This study applied the LEAP (Long-range energy alternatives planning) model and Bass diffusion method for predicting the total energy consumption and GHG (Greenhouse Gas) emissions from the residential and commercial building sector of Sejong City in South Korea. Then, using the Bass diffusion model, three scenarios were analyzed (REST: Renewable energy supply target, BES: Building energy saving, BEP: Building energy policy) for GHG reduction. The GHG emissions for Sejong City for 2015–2030 were analyzed, and the past and future GHG emissions of the city were predicted in a Business-as-Usual (BAU) scenario. In the REST scenario, the GHG emissions would attain a 24.5% reduction and, in the BES scenario, the GHG emissions would attain 12.81% reduction by 2030. Finally, the BEP scenario shows the potential for a 19.81% GHG reduction. These results could be used to guide the planning and development of the new city.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Qing Yang ◽  
Xiaofang Wu ◽  
Haiping Yang ◽  
Shihong Zhang ◽  
Hanping Chen

The purpose of this study is to assess the energy savings and emission reductions of the present rural biogas system in China. The life cycle assessment (LCA) method is used to analyze a “pig-biogas-fish” system in Jingzhou, Hubei Province, China. The nonrenewable energy cost and the greenhouse gas (GHG) emissions of the system, including the pigsty, the biogas digester, and the fishpond, are taken into account. The border definition is standardized because of the utilization of the database in this paper. The results indicate that the nonrenewable energy consumption intensity of the “pig-biogas-fish” system is 0.60 MJ/MJ and the equivalent CO2emission intensity is 0.05 kg CO2-eq/MJ. Compared with the conventional animal husbandry system, the “pig-biogas-fish” system shows high renewability and GHG reduction benefit, which indicates that the system is a scientific and environmentally friendly chain combining energy and ecology.


2017 ◽  
Vol 864 ◽  
pp. 351-356
Author(s):  
Tae Hyoung Kim ◽  
Chang U Chae ◽  
Yu Jin Kim ◽  
Su Hyun Jo ◽  
Sang Hee Kim

The purpose of this study is to construct of database for greenhouse gas (GHG) emission reduction technologies through the analysis of domestic and foreign green building certifications, as part of inventory study of greenhouse gas reduction technologies. For this purpose, analyzing G-SEED, LEED, BREEAM, CASBEE cert3ifications, derived the three categories associated with GHG reduction technologies and investigated the technologies related to standards of the three categories. As a result, commercially available GHG reduction domestic technologies database was constructed based on GHG reduction technology groups. After analyzing domestic and international environment-friendly building certifications (G-SEED, LEED, BREEAM, CASBEE), three categories (ecological environment, materials & resources, energy) associated with GHG reduction technology were derived. The certification standards by category and GHG reduction technologies were analyzed, and GHG reduction technology group was classified. Based on the list of the classified GHG reduction technologies, GHG reduction technologies commercialized in the Republic of Korea were kept as database.


2020 ◽  
Vol 12 (12) ◽  
pp. 5144 ◽  
Author(s):  
Dahye Kim ◽  
Kyung-Tae Kim ◽  
Young-Kwon Park

The purpose of this study is to compare the effect of a reduction in greenhouse gas (GHG) emissions between the combined heat and power (CHP) plant and boiler, which became the main energy-generating facilities of “anaerobic digestion” (AD) biogas produced in Korea, and analyze the GHG emissions in a life cycle. Full-scale data from two Korean “wastewater treatment plants” (WWTPs), which operated boilers and CHP plants fueled by biogas, were used in order to estimate the reduction potential of GHG emissions based on a “life cycle assessment” (LCA) approach. The GHG emissions of biogas energy facilities were divided into pre-manufacturing stages, production stages, pretreatment stages, and combustion stages, and the GHG emissions by stages were calculated by dividing them into Scope1, Scope2, and Scope3. Based on the calculated reduction intensity, a comparison of GHG reduction effects was made by assuming a scenario in which the amount of biogas produced at domestic sewage treatment plants used for boiler heating is replaced by a CHP plant. Four different scenarios for utilizing biogas are considered based on the GHG emission potential of each utilization plant. The biggest reduction was in the scenario of using all of the biogas in CHP plants and heating the anaerobic digester through district heating. GHG emissions in a life cycle were slightly higher in boilers than in CHP plants because GHG emissions generated by pre-treatment facilities were smaller than other emissions, and lower Scope2 emissions in CHP plants were due to their own use of electricity produced. It was confirmed that the CHP plant using biogas is superior to the boiler in terms of GHG reduction in a life cycle.


Soil Research ◽  
2018 ◽  
Vol 56 (7) ◽  
pp. 724 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Philippa M. Brock ◽  
Bruce M. Haigh ◽  
David F. Herridge

To contribute to national greenhouse gas emissions (GHG) reduction targets, grain growers need strategies that minimise emissions associated with grain production. We used life cycle assessments (LCAs) with field-measured production inputs, grain yields and proteins, legume nitrogen (N2) fixation, and soil nitrous oxide (N2O) and methane (CH4) emissions, to explore mitigation strategies in 3-year crop sequences in subtropical Australia. The sequences were: canola plus 80 kg/ha fertiliser nitrogen (80N)–wheat 85N–barley 65N (CaNWtNBaN), chickpea 0N–wheat 85N–barley 5N (CpWtNBa), chickpea 0N–wheat 5N–chickpea 5N (CpWtCp), and chickpea 0N–sorghum 45N (CpSgN). We also assessed the impacts of split fertiliser N application and urea coated with DMPP, a nitrification inhibitor, on the LCA for the CaNWtNBaN sequence. Total pre-farm plus on-farm GHG emissions varied between 915 CO2-e/ha (CpSgN) and 1890 CO2-e/ha (CaNWtNBaN). Cumulative N2O emitted over the 3-year study varied between 0.479 kg N2O-N/ha (CpWtCp) and 1.400 kg N2O-N/ha (CaNWtNBaN), which constituted 24–44% of total GHG emissions. Fertiliser production accounted for 20% (CpSgN) to 30% (CaNWtNBaN) of total emissions. An extra 4.7 kg CO2-e/ha was emitted for each additional kg N/ha of applied N fertiliser. Three-year CH4 emissions ranged from −1.04 to −0.98 kg CH4-C/ha. Split N and DMPP strategies could reduce total GHG emissions of CaNWtNBaN by 17 and 28% respectively. Results of the study indicate considerable scope for reducing the carbon footprint of subtropical, dryland grains cropping in Australia.


2018 ◽  
Vol 40 (5) ◽  
pp. 513
Author(s):  
Lance Gagelman ◽  
Bailey Norwood

Beef is often identified as one of the foods with the largest greenhouse gas (GHG) emissions, causing climate-conscious persons to seek changes in their diets. This study evaluated the ability of a household to reduce its GHG emissions by replacing conventional US beef with grass-fed beef and compared its effectiveness to three other strategies: replacing beef with chicken, becoming a vegetarian, and purchasing carbon offsets. These potential GHG-reducing strategies were considered within a model of a typical US household, using a framework that accounts for all household expenditures and carbon emissions. Replacing beef with chicken and adopting vegetarianism reduced the household’s GHG emissions by 1% and 3%, respectively. Grass-fed beef only reduced emissions if the GHG sequestration rate for pastureland and/or the price of grass-fed beef was high. It is shown that persons paying higher prices for grass-fed beef with the goal of smaller GHG emissions might want to consider buying conventional beef instead and using the savings to purchase carbon offsets. Also, although vegetarianism is often touted as a climate-friendly diet, the model shows that meat-eaters can achieve the same GHG reduction by spending only US$19 per year on carbon offsets. These results assume that additional land for grazing is acquired from recently abandoned cropland, which gives grass-fed beef its best chance at being climate-friendly. Alternative land-use assumptions would only reinforce the result that grass-fed beef does not emit less GHG emissions than conventional beef.


Sign in / Sign up

Export Citation Format

Share Document